Bunkers and Bunkering

A selection of articles previously published by Gard AS
Contents

Introduction...4
Bunkers contracts ...5
Low-sulphur fuels explained..6
USCG detains vessel for failure to use low sulphur fuel oil
 in the North American ECA...7
Turkey – New requirements for fuel oil sulphur content ...8
Fuel handling and treatment on board ..9
EU – de-bunkered off-spec fuel is not waste ...10
Bunker Sampling ..11
Bunkers and bunkering - It’s nothing to do with your golf swing12
Fines for burning non-compliant fuel in EU ports..15
California low sulphur fuel changes 1 January 2014 ..16
North American ECA requirements after 1 August 2012 ..17
Canada implements North American ECA requirements18
Hull and machinery incident - Consequences of using
 off-specification bunkers ..19
The importance of an efficient fuel oil treatment system ..20
Marpol Annex VI - New risks and challenges for owners and charterers22
Marpol Annex VI - Solving the low sulphur issue...25
Marpol Annex VI – Challenges in operating on low sulphur fuel27
Off-spec bunkers – Some practical cases ..28
Controlling bunker costs ..30
Liquid gold - Fuel oil and lubricating oil ..36
Bunker Quality ..38
Some technical aspects of marine fuels testing..39
Effects of off-spec bunkers ...42
Main Engine Damage Due to Ignition Delay ...44
The interplay of fuel and lubricating oil quality on the reliability
 of diesel engines ...45
Bunker spills ...47
Charterer’s Liabilities and Bunkers ..50
P&I incident – How not to do it – Bunker operations...51
Stone cold bonkers – FD&D bunker disputes ..52

Disclaimer

The information contained in this publication is compiled from material previously published by Gard AS and is provided for
general information purposes only. Whilst we have taken every care to ensure the accuracy and quality of the information
provided at the time of original publication, Gard AS can accept no responsibility in respect of any loss or damage of any
kind whatsoever which may arise from reliance on information contained in this publication regardless of whether such
information originates from Gard AS, its shareholders, correspondents or other contributors.
Introduction

This booklet contains a collection of loss prevention materials relating to bunkers and bunkering, which has been published by Gard over the years.

Problems occurring onboard the vessels and which arise from bunker related issues are diverse, and may involve disputes varying from engine/equipment problems and vessel delay to off loading/re-bunkering. Main and auxiliary engine related claims constitute approximately 31 per cent of Gard’s total hull and machinery claims. This figure should also be compared with statistics from the industry indicating that 80 percent of all engine breakdowns are related to problems with either the fuel or the lubricating oil.

As with most claims, bunker related claims can be avoided. The following points may serve as a reminder and assist in ensuring a claim free voyage.

1. Be selective when choosing a supplier. Order fuel to desired ISO grade and describe the required grade in the charterparty as well as in the requisition to supplier.

2. Take samples at the time of delivery and obtain confirmation from the suppliers that the samples are representative. Ensure that the samples taken are properly labelled.

3. If the supplier takes other samples at the time of the delivery, try to establish how and when they were taken. Issue a protest if you are not invited to witness the sampling.

4. Use a fast, reliable testing service to analyse the samples.

5. Segregate new fuel from that already held onboard.

6. Avoid using new fuel until the analysis results have been considered and it has been established that the fuel is suitable.

7. Maintain accurate daily records of the contents of and consumption from each fuel tank.

If off-spec bunkers have been delivered and are found to be unsuitable for use the bunkers should be off-loaded and replaced by new on-spec bunkers. If inferior bunkers have to be used or have already been used the following should be done:

8. The vessel should immediately notify the shipowner if it is experiencing problems with off-spec fuel. If the shipowner purchased the fuel directly from the supplier, he should notify the bunker supplier and forward a copy of the test results.

9. Expert advice should be considered and a reliable fuel testing services such as DNV Petroleum Services (DNVPS) or Lloyd’s Register (FOBAS) should be used to obtain advice on how to proceed in order to solve the particular problem and to avoid damage and mitigate any losses.

10. Contact the engine manufacturer as well as the fuel supplier for advice. Further action will depend on which parameter is off specification and/or what the particular problem is. The degree of quality deviation from the specification must be considered.

11. The charterer should be notified, if the charterer purchased the fuel, and other interested parties.

12. The parties should inform their insurers.
Bunkers contracts

Gard News looks at some of the issues regarding contracts for the supply of bunkers which may affect shipowners and charterers.

Contracts for the supply of marine bunkers may give rise to a number of challenges to owners, charterers and sellers of bunkers. A close study of these contracts will reveal onerous liabilities and responsibilities put on the buyers, be they charterers or owners.

Contracts relating to sale of bunkers often include provisions of a general nature, which apply to all dealings between the parties and may well be given priority over other contracts. Affiliates of the sellers may also be affected by the general conditions even if the buyer may not be aware that a company selling bunkers is an affiliate.

Quality and quantity
Quality may be defined as sellers’ commercial grades offered to customers at the time and place of delivery. However, contracts often contain provisions like “the seller makes no warranties of quality except for being sellers’ commercial grades at the time and place of delivery”, or “the seller does not provide any guarantee nor warranty as to the satisfactory quality, fitness or suitability of products provided”. Such provisions may cause difficulty if a claim for quality is to be pursued.

Contracts may also provide that bunkers to be delivered shall be determined by the sellers’ preferred method of measuring and that the buyer will be charged according to the measurements taken by the seller. The buyers are often encouraged to have an independent surveyor present during measuring. However, contracts may include clauses such as “determination of quantity shall be made solely by the seller”.

Time limits
Claims in respect of bunkers delivery usually have very short time limits and often there are different time limits for quantity and quality claims. According to many standard contracts, claims for short delivery are time-barred 15 days after delivery. The time limit for producing claims in respect of quality is normally 30 days, with very strict procedural steps to be followed by the buyer.

Limitation of liability
Contracts normally contain limitation of liability provisions whereby the sellers’ liability is limited to the price charged under the contract or the cost of removal of the relevant bunkers.

Not surprisingly, liability for consequential losses and personal injury are usually excluded. In addition, some contracts provide that any claim against sellers will be deemed to be abandoned if the sellers are not provided with bank security for costs.

Spill during bunkering
Contracts may have clauses regulating spillage and if they do the sellers will normally be authorised to take whatever measure they deem necessary to minimise damage. Costs will be paid by the party causing the spill or apportioned according to blame if both parties are at fault.

Lien
Certain bunker supply contracts provide that the sellers “shall have the right to assert a lien against the vessel covering the fuels delivered”, regardless of whether the buyer is the owner or charterer of the vessel. By accepting this clause the charterer would give a third party a contractual lien on property they do not own. The legal implications of such a clause are unclear.

Indemnity clauses
Certain contracts contain an indemnity clause stating that the buyer shall indemnify the sellers for “any and all costs, claims demands or liabilities, damage to property or personal injury... unless the same is due to the sole negligence of the seller”. Any incident not caused solely by the negligence of the sellers may therefore trigger liability to indemnify. Some contracts may stipulate that the sellers’ liability is limited to damages and costs caused by gross negligence or wilful misconduct of the seller.

Insurance
Most insurance contracts provide that the cover may be prejudiced if the assured has waived his right to claim damages from third parties. However, this does not normally apply to contracts which are considered “usual” or “customary” in a trade. Hence, as long as the contract entered into may be considered “usual”, insurance cover should not be prejudiced.

Conclusion
Charterers and owners should carefully consider all provisions before signing a bunkers supply contract. This may help to avoid unpleasant surprises.
Low-sulphur fuels explained

Why is there a drive towards the use of low-sulphur fuels?

Whilst shipping, with relatively low CO2 emissions compared with other forms of transport, is regarded as the most energy-efficient means of mass transportation, the global trend towards reducing emissions from all industry sectors has led to recent calls to improve energy efficiency and control emissions in international maritime transport. Shipping is becoming recognised as one of the most significant sources of localised air pollution and acidification in the European Union. A significant element of the pollution from shipboard sources has been identified as being from the flue gas emissions containing sulphur dioxide (SOx).

Some major players in the shipping industry have already taken the initiative of switching to low-sulphur fuel and investing in finding alternative sources of “green” fuel.

But why is sulphur such a villain?

Origin
Sulphur (brimstone) is a naturally occurring element and is found freely within the earth’s crust and is essential to life, forming a constituent part of body fats and bone. It is from here that sulphur finds its way, through the passage of millions of years, into the earth’s supply of crude oil. Most of the oil supply is found between layers of sedimentary rock, this being formed by the layering of sea bed deposits and free organic material settling. The industrious work of anaerobic bacteria consumes the free organic matter converting it into simple hydrocarbons with the leaching of sulphur from the surrounding rock, resulting in crude oils having varying degrees of sulphur content.

Extraction
There are several methods for extracting sulphur. The cheapest and most widespread is hydrotreatment, a process that involves treating the product with hydrogen. The removed sulphur is often in the form of H2S and must be converted into either elemental sulphur or sulphuric acid, both of which are saleable commodities. The recovery process is highly efficient, with a typical recovery rate of 99 per cent.

Not all crude oils extracted from the ground are identical. Crude oil is made up of many different hydrocarbon components, ranging from light ends (aromatic hydrocarbons) to the heavier ends (non-aromatic – oily). There are many forms and within those forms there are many different compositions. In the traditional crudes there is a large difference in viscosity and sulphur content. The more viscous oils tend to contain significant amounts of heavier ends, having a lower API1 gravity and higher sulphur content, whereas the less viscous oils are predominantly made up of the lighter ends and have a lower sulphur content. The heavier the crude, the greater the expense to extract usable components. It is possible with some very light sweet crudes to burn them directly in diesel engines without any significant processing. Crude oil extracted from the ground is classified as sweet or sour, depending on the level of sulphur naturally occurring in the crude. High concentrations of sulphur dictate sour crude, while low levels are indicative of sweet crude. Commercially, sour light crude has been preferred and therefore these resources have been consumed at a far greater rate than the less commercial heavier sour crudes. However, in the future, refiners will need to use the heavier crudes as supplies of the light crudes diminish. As the supply of light sweet crude has progressively declined since 2000, the demand has increased and this has been matched by the increased requirement for low-sulphur fuels.

Why is sulphur undesirable in fuel?
Sulphur has several undesirable properties when combined with the internal combustion engine. It is acidic in nature, which can result in the corrosion of the constituent metal parts, and is known to poison catalytic converters,1 i.e., to reduce catalytic activity, thereby reducing the effectiveness of exhaust systems. Extraction of sulphur through hydrotreatment involves treating the sulphur with hydrogen. Hydrogen is highly reactive and can reduce the lubrication properties of diesel, a significant problem for rotary injector pumps which use the diesel for lubrication. Varying levels of hydrotreatment result in the lubrication properties of diesel varying, depending on the location of the refinery or the source of their crude oil.

Acid rain
Sulphur, when burnt in air, converts into sulphur dioxide (SO2), which, when released into the atmosphere, can form an acidic solution, dissolving in rain to form acid rain. This causes widespread damage to the environment, affecting lakes and forests, and has been blamed for erosion damage to buildings and structures of historic importance.

Although acid rain is so weak as not to cause immediate danger, a prolonged build-up does have significant effects on forests, causing the nutrients in the soils to dissolve and be washed away. The release of aluminium into the soil, which blocks the trees’ ability to absorb nutrients, and the washing of the tree leaves’ natural waxy deposits, restrict their ability to perform photosynthesis. This combined attack can leave trees open to disease and damage by insects and weather. Minor changes in the PH levels of rivers and lakes can affect some species while not affecting others, causing very intense plankton blooms, which go on to form very deadly toxins.

The relationship between acid rain, pollution and fossil fuels was first discovered in 1852 by Scottish chemist Robert Angus Smith, but it was not until the middle of the 20th century that the first significant steps to control air pollution were taken, gradually progressing into the current focus on shipping emissions.

Footnotes
1 American Petroleum Institute.
2 A catalytic converter is a vehicle emissions control device which converts toxic by-products of combustion in the exhaust of an internal combustion engine to less toxic substances by way of catalyzed chemical reactions.
USCG detains vessel for failure to use low sulphur fuel oil in the North American ECA

Gard has recently been advised that the United States Coast Guard (USCG) included in its list of IMO reportable detentions, which is part of the US Port State Control (PSC) program, the detention of a foreign bulk carrier for using fuel oil exceeding the 1.0% sulphur limit content whilst operating within the North American Emission Control Area (ECA). According to the report published on the USCG website, the vessel had low sulphur fuel available on board for use, but neither the Master nor the Chief Engineer was familiar with the current North American ECA regulations, and the compliant fuel was therefore not used.1

The referenced incident clearly indicates that not all Masters and Chief Engineers are fully aware of their responsibilities under MARPOL Annex VI and the requirements when operating in ECAs. Gard's Members and clients are therefore strongly advised to make sure that their Masters and relevant crew are properly trained and familiar with all air pollution prevention requirements within their areas of operation - and with their shipboard procedures concerning use of compliant fuel oil in particular.2

- For Gard's specific advice on operation in the North American ECA, we refer to our previous Gard alert: “North American ECA requirements after 1 August 2012” dated 4 July 2012.
- Further to the details provided in our previous Gard Alert regarding the submission of “Fuel Oil Non-Availability Reports” to the Environmental Protection Agency (EPA), Members and clients should note that a new electronic portal has been launched by the EPA through which vessel owners and operators can electronically submit a disclosure of fuel oil non-availability. The electronic portal is managed through the EPA’s Central Data Exchange (CDX) and instructions on how to access the electronic portal is available through the following URL: http://www.epa.gov/enforcement/air/marpolannex.html#fueloil
- In addition, useful information for ensuring compliance with the North American ECA requirements can be found in the document “Frequently Asked Questions about the North American ECA by USCG” which is also accessible via the EPA URL included above. The USCG and the EPA have compiled a joint list of FAQs and associated responses as a result of queries received since the implementation of the North American ECA. At the end of the document is a list of questions received which are currently under review by the USCG/ EPA.

Footnotes
1 The requirements for the North American area as an ECA under MARPOL Annex VI took full effect on 1 August 2012, while for the United States Caribbean Sea area, the requirements shall take full effect on 1 January 2014 (ref. also IMO MEPC.1/Circ. 756).
2 For Gard’s advice concerning fuel changeover procedures and fuel oil treatment in general, see Loss Prevention Circulars No.15-09 “Low sulphur changeover” and No 05-12 “Fuel handling and treatment on board”
Turkey – New requirements for fuel oil sulphur content

As part of the measures implemented to prevent and reduce air pollution, MARPOL Annex VI sets out the requirements for the sulphur content of any fuel oil used onboard ships in general and for the Emission Control Areas (ECAs) in particular. However, stricter regulations covering the sulphur content of fuel oil may also be enforced by local regulators and Gard has been advised that as of 1 January 2012, Turkey will enforce new regulations covering the limits of the sulphur content of marine fuels used by vessels within its domestic territorial waters. The purpose of the new regulations is reportedly to align these with the requirements contained in the EU Directive for the sulphur content of marine fuels and of MARPOL Annex VI.

Based on information published by the Turkish Chamber of Shipping and the Turkish General Directorate of Marine Transport in September 2011, the new Turkish requirements are:

<table>
<thead>
<tr>
<th>Effective date</th>
<th>Type of vessel and operation</th>
<th>Sulphur content limit required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 January 2012</td>
<td>All vessels arriving at Turkish ports and all inland waterway vessels sailing on Turkish inland waters</td>
<td>Marine fuels at or below 0.1% sulphur content</td>
</tr>
<tr>
<td></td>
<td>All passenger vessels providing regular services in areas covered by Turkey’s marine jurisdiction</td>
<td>Marine fuels at or below 1.5% sulphur content</td>
</tr>
</tbody>
</table>

It has also been indicated that Turkish flagged vessels, when sailing within “SOx Emission Detection Fields as defined by the International Maritime Organization” cannot use marine fuels with a sulphur content exceeding 1.5%. Assuming that this refers to the ECAs defined in MARPOL Annex VI, Members and Clients should be aware that the requirements of MARPOL Annex VI, i.e. the use of marine fuels at or below 1.0% sulphur content within ECAs regardless of flag, will prevail.

Gard’s correspondents in Turkey advise that, to their knowledge:

- The regulations apply to all vessels safely at berth or at anchor within the boundaries of any port, and staying at berth or at anchor for more than 2 hours. Fuel replacement operations must take place in the shortest possible time following the vessel’s arrival in port.
- "Inland waters" means the natural and artificial lakes, reservoirs, fisheries and rivers of Turkey, the Turkish Straits, the Bosphorus and the Dardanelles, and the Marmara Sea are reportedly not part of this definition. However, it has been indicated that vessels transiting the Turkish Straits may still be subject to the new regulations if their stay at an anchorage whilst awaiting passage exceeds 2 hours.
- There are currently no detailed indications as to how the Turkish authorities intend to follow-up the new regulations and what the consequences will be of contravening the regulations.

According to Gard’s correspondents, information about the new fuel regulations has not been readily available and there is no clear indication of how the Turkish authorities will interpret them. Prior to entering Turkish territorial waters, Members and Clients should also check with local sources and/or their local agents whether there is any additional or new information available from the authorities.

We would like to thank Gard’s correspondents in Turkey, Kalimbassieris Maritime Ltd and Vitsan Mümessillik ve Musavirlik A.S., for the above information.
Fuel handling and treatment on board

Introduction
Fuel-related engine breakdowns are not a new problem. Between storage and combustion, the fuel must be transferred, heated, filtered and purified in order to meet the engine manufacturer’s specifications. Depending on the quality of the fuel delivered on board, this can be a complex process and Gard regularly sees engine breakdowns and operational problems caused by poor fuel quality or poor fuel treatment on board. The bulk of such engine breakdowns arises from the use of heavy fuel oil (HFO) and the number of cases where engine damage is caused by catalytic fines seems to be in the majority. Gard has also seen engine problems caused by mixing of incompatible fuels and filters clogged by sludge.

The purpose of this circular is to remind ship owners and operators of important issues regarding fuel handling and treatment on board and to highlight the importance of structured training of crew members to prevent operational problems and engine damage.

Changes in rules and regulations
The drive towards the use of low sulphur fuel oils (LSFO) is causing fuel refining processes to change, sometimes resulting in lower quality HFO being delivered to ships. More blending of different oil components to optimise sulphur content may create side effects such as instability, incompatibility, ignition and combustion difficulties and an increase in the levels of catalytic fines. The need for frequent changeovers between different types of fuels clearly increases the opportunity for errors. Therefore, it is very important that the crew be familiar with the properties of the fuel supplied and the limitations of the particular ship’s fuel treatment plant.

Gard has issued a series of recommendations previously but, because of changes in rules and regulations influencing both the quality of available fuel and the operating procedures on board, it is important to reiterate some of this guidance. Below is a summary of Gard’s advice on fuel handling and treatment on board. It is considered especially important to emphasise this advice to new crew members and junior engineers. For further information and additional details on practical cases and important learning points, please see the Loss Prevention Compilation: “Bunkers and bunkering”.

Fuel oil storage and tanks
Even if fuel is within specification, problems can arise at the very first stage of storage. Build-up of sediment inside the tanks can cause contamination of new fuel and mixing of different batches of fuel can lead to unstable fuel. Important precautions are:

- Regularly clean storage and settling/service tanks. Large particles will settle in the tanks and these particles can be whirled up during rough weather and supplied to the separators, sometimes in concentrations above the limits set out in ISO 8217. Cleaning of fuel oil tanks is often only performed during scheduled yard stay and the implementation of routines for more frequent cleaning should be considered.
- Place new bunkers into empty tanks on a daily basis.
- Keep the HFO inlet temperature at 98°C. The efficiency of the separators is dependent on the inlet temperature of the fuel and even a small reduction in temperature will reduce the quality of the separation. Some commonly observed causes of failures are leaking heating coils, wrong set points for temperature sensors and defective monitoring systems.
- If mixing cannot be avoided, carry out tests to ensure that the two types of fuel are compatible. Use a fast, reliable and recognised testing service to analyse fuel samples and avoid using the new fuel until the analysis results have been reviewed. Carefully adhere to the recommendations provided with the results from the test laboratory.
- Where time is a critical factor but there are doubts about the compatibility and sediment potential of a mixed fuel, carry out the simple on-board test (test kits for this purpose should be available on board) as a minimum, and avoid using the mixed fuel during critical operations or when navigating in restricted areas.
- Consider if bunkering upon entering a port is an option (draft, cargo, timing, etc., permitting) instead of when leaving a port. This will allow analysis of the new fuel to be available prior to leaving port, which of course is the ideal situation.

Fuel oil separation
Even if the HFO received complies with the requirements of ISO 8217, operational problems can arise if the treatment plant and in particular the HFO separators are not properly operated and maintained. In order to efficiently reduce the level of catalytic fines and other impurities present in the fuel, such as rust, sand, dust and water, separator manufacturer’s recommendations should be followed. Important precautions are:

- Regularly drain settling/service tanks to remove water and sludge, preferably on a daily basis.
- Place new bunkers into empty tanks on a daily basis.
- If mixing cannot be avoided, carry out tests to ensure that the two types of fuel are compatible. Use a fast, reliable and recognised testing service to analyse fuel samples and avoid using the new fuel until the analysis results have been reviewed. Carefully adhere to the recommendations provided with the results from the test laboratory.
- Where time is a critical factor but there are doubts about the compatibility and sediment potential of a mixed fuel, carry out the simple on-board test (test kits for this purpose should be available on board) as a minimum, and avoid using the mixed fuel during critical operations or when navigating in restricted areas.
- Consider if bunkering upon entering a port is an option (draft, cargo, timing, etc., permitting) instead of when leaving a port. This will allow analysis of the new fuel to be available prior to leaving port, which of course is the ideal situation.

Fuel oil separation

Fuel oil separation

- If mixing cannot be avoided, carry out tests to ensure that the two types of fuel are compatible. Use a fast, reliable and recognised testing service to analyse fuel samples and avoid using the new fuel until the analysis results have been reviewed. Carefully adhere to the recommendations provided with the results from the test laboratory.
- Where time is a critical factor but there are doubts about the compatibility and sediment potential of a mixed fuel, carry out the simple on-board test (test kits for this purpose should be available on board) as a minimum, and avoid using the mixed fuel during critical operations or when navigating in restricted areas.
- Consider if bunkering upon entering a port is an option (draft, cargo, timing, etc., permitting) instead of when leaving a port. This will allow analysis of the new fuel to be available prior to leaving port, which of course is the ideal situation.

Fuel oil separation

Fuel oil separation

- If mixing cannot be avoided, carry out tests to ensure that the two types of fuel are compatible. Use a fast, reliable and recognised testing service to analyse fuel samples and avoid using the new fuel until the analysis results have been reviewed. Carefully adhere to the recommendations provided with the results from the test laboratory.
- Where time is a critical factor but there are doubts about the compatibility and sediment potential of a mixed fuel, carry out the simple on-board test (test kits for this purpose should be available on board) as a minimum, and avoid using the mixed fuel during critical operations or when navigating in restricted areas.
- Consider if bunkering upon entering a port is an option (draft, cargo, timing, etc., permitting) instead of when leaving a port. This will allow analysis of the new fuel to be available prior to leaving port, which of course is the ideal situation.

Fuel oil separation

Fuel oil separation

- If mixing cannot be avoided, carry out tests to ensure that the two types of fuel are compatible. Use a fast, reliable and recognised testing service to analyse fuel samples and avoid using the new fuel until the analysis results have been reviewed. Carefully adhere to the recommendations provided with the results from the test laboratory.
- Where time is a critical factor but there are doubts about the compatibility and sediment potential of a mixed fuel, carry out the simple on-board test (test kits for this purpose should be available on board) as a minimum, and avoid using the mixed fuel during critical operations or when navigating in restricted areas.
- Consider if bunkering upon entering a port is an option (draft, cargo, timing, etc., permitting) instead of when leaving a port. This will allow analysis of the new fuel to be available prior to leaving port, which of course is the ideal situation.

Fuel oil separation

Fuel oil separation

- If mixing cannot be avoided, carry out tests to ensure that the two types of fuel are compatible. Use a fast, reliable and recognised testing service to analyse fuel samples and avoid using the new fuel until the analysis results have been reviewed. Carefully adhere to the recommendations provided with the results from the test laboratory.
- Where time is a critical factor but there are doubts about the compatibility and sediment potential of a mixed fuel, carry out the simple on-board test (test kits for this purpose should be available on board) as a minimum, and avoid using the mixed fuel during critical operations or when navigating in restricted areas.
- Consider if bunkering upon entering a port is an option (draft, cargo, timing, etc., permitting) instead of when leaving a port. This will allow analysis of the new fuel to be available prior to leaving port, which of course is the ideal situation.

Fuel oil separation

Fuel oil separation

- If mixing cannot be avoided, carry out tests to ensure that the two types of fuel are compatible. Use a fast, reliable and recognised testing service to analyse fuel samples and avoid using the new fuel until the analysis results have been reviewed. Carefully adhere to the recommendations provided with the results from the test laboratory.
- Where time is a critical factor but there are doubts about the compatibility and sediment potential of a mixed fuel, carry out the simple on-board test (test kits for this purpose should be available on board) as a minimum, and avoid using the mixed fuel during critical operations or when navigating in restricted areas.
- Consider if bunkering upon entering a port is an option (draft, cargo, timing, etc., permitting) instead of when leaving a port. This will allow analysis of the new fuel to be available prior to leaving port, which of course is the ideal situation.
observed causal factor for failure is incorrect assembly of the separators after cleaning.

- Verify the efficiency of the separators and the cleanliness of the service tank by sampling the fuel in the system before and after the separators and as close to the engines as possible. Send the samples in for analysis by a recognised laboratory. Verification of separators should be carried out at least once per year.

Fuel changeover

Ships that trade between areas with different sulphur limitations should have detailed changeover procedures. Insufficient knowledge of the actions required in a given situation may result in engine failure, so changeover procedures should be practised before entering restricted waters, especially in ships that do not perform fuel changeovers on a regular basis. The risk of incompatibility when mixing HFO and low sulphur distillates, or even marine gas oil (MGO), can be high and requires increased awareness.

Conclusion

For the safety of the crew, ship, and cargo, and to minimise costs and periods off-hire caused by engine breakdowns, it is important that ship owners and operators focus on the quality of fuel handling and treatment on board. All engine crew must receive proper and regular training and it is particularly important to ensure that junior engineers become familiar with the ship’s fuel treatment equipment and how to perform regular maintenance. Changes in rules and regulations may lead to changes in procedures so training and facilitation of experience exchange are essential for the crew to be able to detect the cause of a fuel-related problem when it occurs, and adjust the fuel handling and treatment procedures to minimise potential losses.

EU – de-bunkered off-spec fuel is not waste

A recent guiding ruling from the Court of Justice of the European Union (CJEU) states that off-spec oil need not be handled as waste.

As previously reported (see Gard Alert “De-bunkering in The Netherlands” dated 26 January 2012) there have been some uncertainties regarding the Dutch authorities’ interpretation of the EU waste legislation and at what time bunker fuel not compliant with the stated specifications (off-spec fuel) is to be considered as waste. Current regulations define ‘waste’ as “any substance or object which the holder discards or intends or is required to discard” and Dutch environmental authorities have in some instances interpreted this statement to mean that if a buyer rejects a parcel of fuel oil, the oil must be considered as ‘discarded’ and accordingly treated as waste. This interpretation has resulted in a number of criminal investigations and cases against bunker providers for failure to follow environmental regulations when de-bunkering fuel that did not meet contract specifications but was nonetheless suitable for reconditioning and resale.

The recent CJEU ruling followed an appeal by Shell Nederland and Shell Belgium against a prior ruling by the Dutch environmental authorities. The case concerned contamination of a parcel of ultra low sulphur diesel (ULSD) with remnants of MTBE. As a result, the flashpoint became too high and the ULDS was considered off-spec by the buyer. Shell agreed to refund the purchase price and take the parcel back and transported the oil to the Netherlands with the intention of blending it and placing it back on the market. However, the Dutch authorities decided that this oil should be treated as waste and pursued Shell for criminal fines.

The CJEU found that the buyer’s rejection of the cargo as off-spec under the sales contract was not decisive and held that “a consignment of diesel accidentally mixed with another substance is not covered by the concept of ‘waste’, provided that the holder of that consignment does actually intend to place that consignment, mixed with another product, back on the market.”

Members and Clients are advised to take note of the recent ruling by the CJEU when considering options for de-bunkering and reconditioning of off-spec fuel in the Netherlands. For further information on this the particular Shell case, please see CJEU Case No.C-241/12.

Footnotes

1 Permissible levels of sulphur oxide (SOx) emissions are regulated via IMO’s MARPOL Annex VI and various domestic regulations. The sulphur content limit for LSFO allowed therefore depends on the location of the ship and the regulations in force at the time. At the time of writing, the maximum sulphur limit of fuel oils used outside emission control areas (ECAs) and other designated areas is 3.5%, while inside ECAs the limit is 1.0% (ref. IMO MARPOL Annex VI). Identified designated areas other than the MARPOL ECAs are: EU Community ports (0.1%), Turkish ports (0.1%) and California coastal areas (1.0% for marine gas oil (MGO) and 0.5% for marine diesel oil (MDO)).

2 ISO 8217 specifies the requirements for petroleum fuels for use in marine engines and boilers prior to appropriate treatment before use.
Bunker Sampling

Introduction and background
Gard is frequently involved with machinery damage/claims related to fuel quality. The purpose of this circular is to emphasise the importance of the fuel ordering, delivery procedures, bunker delivery receipts and bunkering samples including the correct procedures for taking and handling of the samples.

Reducing the risk
To reduce or minimise the risk of claims arising or breakdown of machinery, there are some main issues to be aware of when handling bunkers.

• Fuel sampling and analysis is essential for verification of the quality of the fuel received onboard. Procedures and instructions should be established within the technical or operational departments to ensure correct sampling and stating where the samples should be sent for analysis. It is important to ensure that the engineers on board and technical staff ashore understand the results of the analysis and the limitations of their equipment. It is important that the quantity of the sample is large enough for the appropriate analysis to be undertaken.

• Always be selective when selecting fuel supplier. Order fuel to the desired ISO grade, and describe the required grade in the charterparty as well as in the request to the supplier.

• Take samples at the time of delivery and obtain confirmation from the suppliers that the samples are representative of the entire delivery. The samples taken must be properly labeled. If the supplier takes other samples at the time of delivery, try to establish how and when they were taken. Issue a protest if you are not invited to witness the sampling.

• One sample should be retained on board the ship, another should be retained by the supplier, and a further sample may be used for analysis purposes and a fourth may be held by a responsible independent party for safe keeping and reference in case of a dispute.

• Bunker fuel samples should be sent to the laboratory for testing as soon as possible after completion of bunkering. Use a fast, reliable testing service to analyse the samples. Segregate any new fuel from that already held onboard. Avoid using the new fuel until the analysis results have been considered and it has been established that the fuel is suitable. Maintain accurate daily records of the contents of and consumption from each tank.

Off-Spec bunkers
If off-spec bunkers have been delivered and are found to be unsuitable for use, the bunkers should be off-loaded and replaced by new on-spec bunkers. If inferior bunkers have to be used or have already been used the following should be done:

• The vessel should immediately notify the shipowner if it is experiencing problems with off-spec fuel. If the shipowner purchased the fuel directly from the supplier, he should notify the bunker supplier and forward a copy of the test result. The time limit for any protest vis-a-vis the supplier is very short, at times only 2 weeks.

• Expert advice should be obtained from a reliable fuel testing service as to how to proceed and how to solve the particular problem. Contact the engine manufacturer as well as the fuel supplier for advice. Further actions to be taken will depend on which parameter is off-specification.

Recommendations
Bunkering procedures, including fuel-testing procedures and charter party requirements to fuel quality, should be reviewed to ensure that the correct procedures are followed when dealing with off-spec bunkers. The shipowners should also familiarise himself with any recommendations issued by class societies or any other experts. The crew involved should also be properly briefed on these guidelines and procedures to avoid costly and time consuming interruptions. Gard strongly recommends that bunker sampling and testing should be carried out in accordance with correct procedures. The lack of testing can lead to extensive damage to the vessels machinery which is costly for all involved. can lead to extensive damage to the vessels machinery which is costly for all involved.
Bunkers and bunkering
- It’s nothing to do with your golf swing

Introduction
Everybody who owns or drives a car has experience of bunkering. We all fill up with petrol from time to time. We do so almost without thinking about it. Fortunately, we rarely, if ever, have a problem with the quality of the fuel. And if we spill some petrol, it is not a “pollution incident”.

The procedures which take place during bunkering vessels are, or should be, very different from the procedure of putting petrol into your car. Given the problems and liabilities which bunkers and bunkering can lead to, it is essential that the entire bunkering operation, from start to finish, is closely monitored by the receiving vessel. It is also vital that the quality of the (new) bunkers is checked and the bunkers are tested before they are used or mixed with other bunkers already on board.

Apart from nuclear-powered ships, all vessels have to take on bunkers from time to time. Large bulk carriers and container vessels can carry as much as 10,000 MT of fuel oil at any one time. Even the “workhorses” of the bulk trades, the Handymax and Panamax vessels, may have up to 1,000 MT of fuel oil on board after bunkering. Fuel oil is very viscous and persistent.

The problems which (good or bad) bunkers can cause
Bunkers do not need to be “bad”, or, more correctly, off specification, to cause serious claims and liabilities. A spill of bunkers from any vessel is likely to lead to a difficult and expensive clean-up operation and - depending on where the spill has occurred - to claims for damage to the environment and for losses suffered by individuals or organisations allegedly affected by the spill.

A spill of bunkers may lead to costly claims. Bunker experts generally consider that overall bunker quality has deteriorated over the years, although the quality also tends to follow the price and vice versa. However, it is often the case that, because of increased demand for high quality products such as kerosene and jet fuel, the “raw material” left behind after the crude oil has been processed is likely to lead to bunkers of a lower quality being produced. If the bunkers contain additives such as used car oil, this may well add to the problem.

Off-specification bunkers (bad bunkers) can cause many problems. At best, they may result in the main engine not performing effectively or efficiently. This may result in reduced speed and over-consumption of bunkers. In turn, either or both of these is likely to lead to a claim by charterers - a speed and consumption claim.

More importantly, the consumption of bunkers which are off-specification could well cause damage to the main engine. Relatively speaking, the age and condition of the engine is not relevant, although it is perhaps true to say that an engine in first-class condition may have a greater tolerance for bad bunkers than an engine in poor condition. Nevertheless, damage to the main engine caused by bad bunkers is likely to be a serious problem. Your hull insurers are likely to be worried.

Such main engine damage can lead to even more serious problems. If a loss of main engine power occurs at sea, there is likely to be a significant delay to the vessel while the engineers work hard to put right the problem. They may not be able to do so. Salvage assistance, or possibly a straightforward tow, may be needed. Even more seriously, a vessel with little or no main engine power could, particularly in confined waters, result in the vessel grounding or colliding with another vessel or fixed or floating object such as a jetty or dolphin. If this happens, both your hull and your P&I insurers will be very worried people. The potential claims and liabilities arising in such circumstances are very large.

Bunker spills
The International Tanker Owners’ Pollution Federation (ITOPF) publishes oil pollution statistics every year. In a speech made at an oil pollution conference in London in May 2001, the managing director of ITOPF said “about 28 per cent of the oil spills attended on site by ITOPF staff over the past fifteen years have involved bunker fuel spilled from non-tankers. In the last two years, this percentage has risen to about 50 per cent.”

Causes of spills from tankers, combination carriers and barges during 1974-2000 (Source: ITOPF).

The above figures, produced by ITOPF in their latest Handbook, show the causes of spills from tankers, combination carriers and barges, but not bulk carriers, during the period 1974-2000. It can be seen that 35 per cent of such spills occurred during the routine operation of loading or discharging. A further 15 per cent fall into the “other” category, not involving serious casualties. These “other” spills are almost certainly operational as well. Bunkering by itself accounts for seven per cent.

It is likely that for bulk carriers, the number/percentage of oil spills caused by casualties of some sort (i.e., grounding or collision) is substantially less than for tankers (which is only 14 per cent anyway) and the number/percentage of spills happening during routine operations is substantially higher.

Most bunker spills will be in the range of between 7 and 700 MT. Some will involve smaller quantities. Unless the vessel concerned is a large vessel, with a large quantity of bunkers on board, and is involved in a major casualty, such as a grounding in which more than one bunker tank is holed, few bunker spills will be more than 700 MT.

Many such spills are the result of carelessness or negligence, either on the part of those supplying the bunkers, or those on board the vessel receiving them. Even a technical problem, such as the failure of an alarm to go off, may well be the result of human error. More often, our experience is that one or more of the following are present:
- failure to agree a loading rate with the bunker barge or shore loading facility;
- failure on the part of the bunker barge or shore facility to stick to the agreed loading rate;
- failure on the part of the vessel’s crew to check that the bunkers are being loaded at the agreed rate and if they are not, failure to request the loading barge to slow down;
- failure to monitor the tank(s) into which the bunkers are being loaded;
- failure to respond to an alarm indicating that the tank is nearly full.

Out of all of these, Gard's experience is that most bunker spills result from an overflow of bunkers. The cause is usually one or both of the last two failures. A former deck officer once suggested that the best way of avoiding bunker spills would be to connect all the bunker tank airvents and overflow pipes to the chief engineer's cabin!

Example

A small tanker was discharging mineral oil at a berth upriver in London. Owners' safety officer was on board to assist with a vetting inspection by one of the major oil companies. During discharge from four of the vessel's tanks, the high level alarms went off. The master and chief officer were taking part in the vetting inspection and the second officer was on duty. He assumed that the alarms had been activated in the course of the vetting inspection - perhaps to show to the inspectors from the oil company that they worked properly - and took no action. In fact, they had been activated in exactly the intended way - to warn that cargo was close to overflowing from a cargo tank. A couple of minutes later, the cargo overflowed from one of the tanks. Fortunately, the crew then responded very quickly and took all the required steps to stop discharge and clean up the spill. As a result, only a very small quantity - estimated at 100 litres - went over the side. Later investigation showed that the device showing the position of the cargo valves (i.e., open or closed) was not working on almost all valves. Both the chief officer and the second officer wrongly thought that a particular valve was closed, when in fact it was open. Neither of them checked the position of the valve before starting discharge. The quantity spilled was very small. It was not spilled into the water, but on to "Thames mud", which becomes visible at times as a result of the large rise and fall of the river. Despite this, the Port of London Authority (PLA) investigated the incident, with a view to possible criminal prosecution. Ultimately, they issued the master with a letter together with the shipowner, is criminally prosecuted. Regrettably, this trend is continuing. Remember that criminal prosecution and any liability arising as a result is not covered by P&I insurance. The legal costs involved and any liability incurred may well remain with the person or company in question. All these problems can and often do arise in a bunker spill.

Even if there is no initial bunker spill, it is very likely that, if the vessel has suffered a casualty of some kind, the first "request" (i.e., instruction) from the authorities will be: "remove the bunkers". The nature of the casualty and the quantity and location of the bunkers are often ignored. The focus - sometimes to the exclusion of almost everything else - is on the potential pollution which the bunkers could cause.

This may be good for the environment. It is certainly good business for the salvors. However, someone has to pay for it and it is likely that a shipowner will look for his P&I Club to do so, on the basis that the removal of the bunkers is mainly a measure to avoid or minimise pollution.

Over the last 20 years or so, there has been worldwide growth of environmental awareness and concern about the damage which we are all, in some way, said to be doing to the environment. These days, the publicity given by the media to an oil spill of any significance is extensive and almost always unfavourable to the shipowner, or indeed, almost anyone involved in the operation of the ship. Remember the very negative publicity which Total, the charterers of the ERIKA, received.

Bunker spills are difficult and expensive to deal with. International conventions With the exception of the US, a large proportion of the world's coastal states have ratified one or both of the Civil Liability Conventions (CLCs) and the International Convention on the Establishment of an International Fund for Compensation for Oil Pollution Damage (Fund Convention). These conventions essentially deal with compensation for loss and damage caused by oil pollution from tankers and are widely recognised and accepted.

The text of a new convention, specifically covering bunker spills, was agreed in March 2001 at an IMO Diplomatic Conference in London. It is unlikely to come into force for at least a couple of years, but the intention is for this latest Convention to fill the gaps left by the earlier CLCs, which effectively date back to 1969 and 1992.1

Neither the CLC 1969, nor the Protocols to the CLC of 1992, will apply to a spill of the bunker.

Disposal of the oil which has been collected is also a problem and can be just as difficult and expensive as the clean-up operation. If the spill has occurred in or close to an area where other ships or private boats are moored, their hulls may be oiled and require cleaning. Even more importantly, if the spill affects, or is alleged to have affected, mariculture, often fish-farming, the claims can be very significant. The local and sometimes the national, media may well take an interest in the incident. Even worse, local or national politicians may either take an interest themselves, or find themselves called upon to do so by their voters, whose pleasure boats have been oiled, or whose beach has been closed while the clean-up is carried out.

Even a small quantity of fuel oil can, if spilt, result in very large liabilities. Perhaps the best - or worst - example concerns a non-tanker - a woodchip carrier, which spilled approximately 17.5 MT of heavy fuel oil in a port in Southern California. The spill occurred during loading and was caused by the vessel making contact with a dolphin on the jetty. A bunker tank was holed and heavy fuel oil was spilt. For the first five days, the clean-up cost, per day, was approximately USD 1 million. After five days, it was possible to reduce the cost per day to about USD 500,000. By the end of 1999, the Club in question had paid approximately USD 14.3 million, mainly in respect of clean-up costs and third party claims. They were estimating a further USD 10.7 million to cover the claim for alleged natural resource damage and further legal and expert's costs. A round sum of USD 25 million!

This is the worst-case scenario - the P&I man's nightmare. Most bunker spills do not cost anything like this amount, but they are difficult and expensive to deal with. If you spill a little petrol when you are filling up your car, it is nobody's problem but yours, since you have to pay for the petrol you have lost. You do not have to clean it up. Nor do you have to pay compensation to the garage owner for "damaging" his property. Nor do you have to deal with claims from the petrolieries - for example, people living near to the garage who may claim that they have been affected by the smell of the petrol which has been spilt. Nor are you likely to face civil and criminal proceedings, with every chance of being deemed to be guilty, which brings with it the potential for large fines and even imprisonment. In the example mentioned, criminal prosecution did not happen. However, Gard has had many cases, in various countries, where the master, usually together with the shipowner, is criminally prosecuted. Regrettably, this
of bunkers from a non-tanker, such as a bulk carrier. However, in general terms, if the bunker barge supplying the oil could be classed as a "tanker" and the spill occurred from the bunker barge, the CLC in one of its two forms would probably apply.

The fact that many countries are now focusing more closely on bunker spills can be seen from the new compulsory insurance requirements which have come into force in Australia.

As from 6th April 2001, all ships larger than 400 GT which are visiting an Australian port and are carrying oil as cargo or bunkers must have a "relevant insurance certificate". This rule does not cover oil tankers which are already required to have such insurance under the 1992 CLC. Clearly, therefore, the rule is aimed at non-tankers and by implication, at bunker pollution. Amongst other things, the "relevant insurance certificate" must state the amount of insurance cover, or other financial security, which "must be no less than the limit of any liability applicable under relevant international law". The good news is that, in most cases, the requirements should be met by carrying on board the original P&I Club certificate of entry, or a certified copy. The certificate must be produced on request.

Other problems with "good" bunkers As can be seen from the above, bunkers do not have to be "bad" to cause serious problems. Apart from the pollution aspect, even on-specification bunkers can cause problems and damage, as can be seen from the example described below.

A purpose-built car carrier, laden with cargo for Japan and entered with Gard, was bunkering heavy fuel oil in the Far East just before Christmas 2000. The vessel was receiving bunkers into the No. 1 port and starboard bunker tanks. Because an inlet valve had been left open, bunkers leaked into the No. 4 centre heavy fuel oil tank. This tank was nearly full. Not surprisingly, it filled up and the excess oil overflowed up the ventilation pipe. Unfortunately, this pipe had a small hole, later found to have been caused by corrosion, through which fuel oil leaked out. Where did it go? Approximately 3 MT leaked out on to a car deck in No. 2 hold. Some of this ran down through lashing openings on to a further three car decks. As this was not bad enough, a further, fortunately small, quantity of fuel oil leaked from a previously repaired part of the ventilation pipe from No. 4 centre F.O. tank. The cargo was BMW cars! Some 41 cars were badly damaged. A further 209 were slightly damaged. The estimated liability on the Club is USD 250,000. In addition, some areas of the vessel were heavily oiled and had to be cleaned. The time and expense involved in cleaning the vessel is unlikely to be covered by the P&I insurance. It is owners' responsibility to properly clean and prepare the vessel for loading and carrying cargo.

Bunker shortages

Engineers reading this article will know the difficulties involved in accurately measuring and perhaps more importantly, agreeing with the bunker supplier, the quantity of bunkers supplied. Inevitably, with a bulk liquid, there will be some minor measurement variations. Equally, however, there are examples where the difference between the bunker supplier's figures and the vessel's figures are substantial. It always seems to be the case that the supplier's figures are higher than the vessel's figures.

In a case mentioned in a recent warning issued by DNV and Intertanko, a vessel bunkered diesel and fuel oil. The responsible engineer on board the vessel recorded substantial shortages for both products. In the case of the diesel, the bunker barge's figure was 119.69 cbm, whereas the vessel's figure was 93.0 cbm, a shortage of 26.69 cbm. At the request of the vessel, the bunker barge resumed pumping diesel. Problems were also noted in relation to the fuel oil. The flow from the barge to the vessel was very slow. When the engineer commented on this, the crew of the bunker barge were seen to adjust a valve on board the barge, which resulted in the flow speeding up. Even so, on completion of bunkering, the vessel still recorded shortages of some 3 MT in relation to the fuel oil and some 19 MT in relation to the diesel.

"Bad" bunkers

We have seen how perfectly good (i.e., within specification) bunkers can cause serious problems and liabilities. Bad bunkers - bunkers which are off-specification - can cause equally difficult and expensive problems and liabilities.

Gard News issue No. 156 contains an article dealing with procedures for bunkering. It includes comments and suggestions in relation to sampling and testing the bunkers received, as well as practical advice, especially regarding the sampling and testing of bunkers before use. A little prevention at an early stage can avoid the need for a lot of (expensive) cure at a later date! Speed and consumption claims

Unfortunately for shipowners and charterers and their insurers, proper sampling and testing is not always carried out. As a result, fuel which is off-specification in some way may well be supplied to the vessel. This does not mean that serious problems will automatically follow. The vessel's engine may be capable of using the fuel, albeit with a reduced power output and/or a greater consumption of fuel to produce the same power. Such circumstances are, however, likely to lead to a claim by charterers either because the vessel has burned a larger quantity of bunkers than she should have, or because she has taken longer to complete the voyage (because of the reduced power output). Often, the claim is a combination of the two aspects - what is called a speed and consumption claim.

Claims for delay

A speed and consumption claim by itself is not necessarily particularly difficult or expensive, but a long delay in the voyage will mean a delay in the delivery of the cargo. Often, this may not matter. Sometimes, however, it may be extremely important to both the seller and the buyer, especially if the price of the cargo has gone up or down during the period of delay. In such circumstances, the party who may have lost money because of the delay may well bring a claim against the vessel. Depending on the cargo and the variation(s) in price, the amount may be large. Further, the cargo itself may have suffered damage. Many fruit and vegetable cargoes have a limited shelf life and the conditions under which they are carried are calculated as precisely as they can be for the expected length of the voyage. A delay of only a few days can upset these calculations. The result can often be a claim for damage to the cargo, often the entire cargo if the vessel is carrying foodstuffs with a limited shelf life.

Conclusion

Being human, all of us will make mistakes from time to time. Fortunately, these mistakes rarely have important consequences, but from time to time, a person involved in the bunkering operation, or in the preparation and use of the bunkers on board the vessel, will make a mistake which results in a spill of bunkers, or in damage to the main engine or other machinery on board.

Clearly, it is impossible to do away with human error completely. One must accept that accidents will happen from time to time - that is what P&I insurance is for. However, by properly following well prepared and clearly explained procedures, the problems and incidents mentioned above can be avoided.

Footnotes

2 “Liquid Gold - Fuel oil and lubricating oil”, pages 30-32.
Fines for burning non-compliant fuel in EU ports

EU Directive (1999/32/EC), covering the sulphur content of marine fuels, was amended in 2005 (2005/33/EC). As of 1 January 2010, ships berthed in a European Union (EU) port must use marine fuel with a sulphur content not exceeding 0.1% by mass (Article 4b(1)). The Directive also states that sufficient time must be allowed for the crew to complete any fuel changeover operation as soon as possible after arrival at berth and as late as possible before departure. Ships that, according to published timetables, are due to be at berth for less than two hours are exempted from the requirement (Article 4b(2)). The Directive was amended again in 2012 (2012/33/EC), bringing EC legislation in line with MARPOL Annex VI on the requirement for the use of low sulphur fuels, and the current EU requirements can be summarised as follows:

<table>
<thead>
<tr>
<th>Type of ship:</th>
<th>Max fuel sulphur content outside SOx ECAs</th>
<th>Max fuel sulphur content inside SOx ECAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) All ships excluding b) and c) below</td>
<td>3.5% from 18 June 2014 0.5% from 1 Jan 2020</td>
<td>1.0% until 31 Dec 2014 0.1% from 1 Jan 2015</td>
</tr>
<tr>
<td>b) Passenger ships on regular services(b) to/from EC ports excluding c) below</td>
<td>1.5% until 1 Jan 2020 0.5% from 1 Jan 2020</td>
<td>Same as above</td>
</tr>
<tr>
<td>c) Ships at berth in EC ports</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

From time to time Members and clients contact Gard to ask for advice when a ship has been fined for burning non-compliant fuel in an EU port. Gard has recently been notified of three different cases where ships have been fined for alleged breaches of a state’s national legislation concerning sulphur content of marine fuels used in ports.3

Case A: A ship at an outer anchorage, waiting for a load berth, did not perform a fuel changeover operation. However, the authorities still considered the ship’s position to fall under the regulatory definition of “at berth”4 because it was securely anchored inside the port limits and providing crew with accommodation and associated services (hotelling).

Case B: A ship arrived in port without having compliant fuel available on board. Although low sulphur fuel had been ordered well in advance and was to be delivered immediately upon arrival in the port, bad weather prevented the bunker barge operations and the ship was not able to complete its fuel changeover operation within what was considered a “reasonable time” by the authorities.

Case C: A ship completed its fuel changeover operation immediately after berthing, but upon inspection by the local authorities, it was discovered that the delivery note for the low-sulphur fuel being consumed in port only indicated that its’ sulphur content was less than 0.4% - and no fuel samples had been analysed upon delivery to establish if the fuel’s actual sulphur content was exceeding 0.1% or not.

After more than three years in operation, shipowners and operators calling at EU ports should be fully conversant with the applicable regulations. However, given that there may be differences in enforcement, even within member states, recent cases indicate that Members and clients should continue their focus on providing crew with proper instructions on the purchase and use of low sulphur fuels. The following should be noted:

- The requirements for fuel changeover contained in the EU Directive apply from the moment the ship is securely moored or has anchored in port, but since the Directive does not contain a common definition of ‘port’, the delimitations of each port are established locally. Ships intending to burn high sulphur fuel at outer anchorages within EU ports should therefore, for each individual port call, seek the advice of their agent as to whether or not a specific anchorage falls within “the port” for the purposes of sulphur emission compliance.
- Guidance on the term ‘sufficient time’ for the crew to complete fuel changeover operations may vary within member states, e.g. UK authorities will in general consider one hour to be sufficient time to complete fuel changeover operations but recognising that the time may vary depending upon ship type and ship systems (ref. MCAs MGN 400 (M+F)).
- Authorities are likely to expect a ship to have compliant fuel onboard on arrival at the berth and will not accept additional delays in the changeover operation caused by time spent procuring and taking delivery of compliant fuel after berthing.

Useful clarifications are also provided in the EU document: “Questions and Answers on the use of fuel containing non-compliant fuel after berthing.

Footnotes
1 The current EU SOx ECAs are the Baltic Sea and the North Sea, including the English Channel.
2 Regular services means: “a series of passenger ship crossings operated so as to serve traffic between the same two or more ports, or a series of voyages from and to the same port without intermediate calls, either: (i) according to a published timetable, or (ii) with crossings so regular or frequent that they constitute a recognisable schedule”.
3 It is important to remember that each EU member state has implemented the EU Directive through their national legislation.
4 Ships at berth means: “ships which are securely moored or anchored in a Community port while they are loading, unloading or hotelling, including the time spent when not engaged in cargo operations”.

© Gard AS, January 2014
California low sulphur fuel changes 1 January 2014

Phase II of the California Ocean-going Vessel (OGV) Fuel Regulation entered into force on 1 January 2014 and stipulates that only marine gas oil (DMA) and marine diesel oil (DMB) with sulphur levels at or below 0.1% can be used. The Phase II requirements are enforced within California’s OGV Regulatory Zone which extends 24 nm from the California Baseline (shoreline), including 24 nm from the shoreline of the offshore islands.1

Although the regulation does provide a ‘Noncompliance Fee Provision’ designed to accommodate operators unable to find compliant fuel, Members and clients with ships calling at U.S. West Coast ports are urged to make their best efforts to obtain compliant fuel. More details are provided in California Air Resources Board’s Marine Notice 2013-1 which can be obtained by using the following link: http://www.arb.ca.gov/ports/marinevess/ogv.htm.

It should be noted that ships must comply with both the California OGV Fuel Regulation and the MARPOL Annex VI North American Emission Control Area (ECA) fuel sulphur requirements. The ECA sulphur limit will drop to 0.1% from the start of 2015.

In addition, Members and clients should be aware that there are also 2014 requirements for some vessels under California’s At-Berth Regulation. More information on this regulation can be found by using the following link: http://www.arb.ca.gov/ports/shorepower/shorepower.htm

Gard would also like to take the opportunity to remind Members and Clients of the importance of having detailed changeover procedures for ships that trade between areas with different sulphur limitations.2 The need for frequent changeovers between different types of fuels clearly increases the opportunity for errors to occur and it is very important that the crew is familiar with the properties of the fuel supplied and the limitations of the particular ship’s fuel treatment plant. Insufficient knowledge of the actions required in a given situation may result in engine failure, so changeover procedures should be practised before entering restricted waters, especially on ships that do not regularly perform fuel changeovers.

Footnotes
1 See also Gard Alert from October 2011 concerning amendments to the California Fuel Regulations.
2 It is a MARPOL Annex VI requirement to have a written procedure on board the ship showing how the fuel oil change-over is to be done when entering or leaving an Emission Control Area (ECA).
North American ECA requirements after 1 August 2012

North American Emissions Control Area (ECA) requirements

The North American ECA will enter into force on 1 August 2012 and includes areas around the Hawaiian Islands but does not include the US Caribbean Sea ECA, which will enter into force on 1 January 2014. The geographical limits of the North American ECA can be found in Appendix VII of MARPOL Annex VI and in IMO Circular MEPC.1/Circ.723.

The sulphur content of fuel oil used on board vessels operating within the North American ECA must not exceed 1.0% by weight on or after 1 August 2012. As an alternative to using low sulphur fuel oil, shipowners and operators may choose to equip their vessels with exhaust gas cleaning devices (scrubbers) in accordance with MARPOL Annex VI Regulation 4 and the corresponding emission value for a fuel oil sulphur content of 1% is a ratio of 43.3 SO2 (ppm)/CO2.

Further information can also be found in the US Environmental Protection Agency’s (EPA) fact sheet: Designation of North American Emission Control Area to Reduce Emissions from Ships. For vessels visiting Californian ports special requirements apply within 24 nautical miles (nm) of the California Baseline (shoreline). Reference is made to Gard Alert “Amendments to California Clean Fuel Regulations” issued on 1 December 2011 for details.

Interim guidance on the non-availability of compliant fuel oil for the North American ECA

The US Environmental Protection Agency (EPA) indicate that they do expect fuel oil compliant with the 1.0% sulphur standard to be available for vessels that plan to operate in the North American ECA - but also anticipates that, despite the best efforts of the shipowner or operator, they may in some instances be unable to ensure compliance. The EPA has therefore released interim guidance for shipowners and operators to:

1) provide background information on the North American Emission ECA fuel sulphur standards;
2) explain in what way compliance with these requirements can be established as well as how to demonstrate compliance if requested to do so by the United States government; and
3) describe how to make a fuel oil non-availability claim should the vessel not be able to obtain compliant fuel.

Click here to access the full text of the EPA statement and the interim guidance.

Recommendations

Members and clients are strongly advised to plan in advance so that vessels entering or operating in the defined North American ECA have fuel on board with a sulphur content of a maximum of 1.0% and that they start using it as of 1 August 2012. Once the North American ECA requirements enter into force, it will be essential that accurate records are maintained on board in order to be able to demonstrate compliance with the new requirements at any time during routine Port State Control inspections. Typical documents to be presented are bunker delivery notes, representative fuel oil samples, written fuel oil changeover procedures and the fuel changeover logbook. Other methods of verification of compliance may also be enforced and could include sampling and analysing fuel oil from the vessel’s fuel oil tanks and lines and air emissions from the vessel’s exhaust plume.

If, in spite of best efforts, it is not possible to procure compliant fuel oil prior to entering the North American ECA, the United States government and the Flag Administration must be notified. In order to minimise disruption to trade and avoid delays, a “Fuel Oil Non-Availability Report” should be submitted as soon as possible and no later than 96 hours prior to entering the North American ECA. The interim guidance contains a list of the information that should be included in a Fuel Oil Non-Availability Report and also provides details of where to send the report.

Footnotes

1 See also Gard Alert “North American ECA MARPOL amendments entered into force 1 August” issued on 18 October 2011.
2 “Best efforts” to procure compliant fuel oil, include, but are not limited to, investigating alternative sources of fuel oil prior to commencing the voyage or en route prior to entering the North American ECA. However, a deviation from the intended voyage in order to purchase compliant fuel oil is not required and the EPA does not expect vessels to use distillate fuel oil, other than as a blending agent, prior to 1 January 2015 when the 0.1% sulphur standard begins.

© Gard AS, January 2014
Canada implements North American ECA requirements

The North American Emission Control Area (ECA) requirements, as defined under MARPOL Annex VI Regulations for prevention of air pollution from ships, are now in force in Canadian territorial waters.

The North American ECA was originally due to enter into force on 1 August 2012, but Transport Canada’s amendments to their Vessel Pollution and Dangerous Chemicals Regulations were delayed due to additional consultations with the domestic marine industry. However, on 8 May 2013, the amendments to the regulations were published in Part II of the Canada Gazette.

Under the category “Sulphur Oxides (SOx)”, the amended regulations state that “the authorized representative of a vessel must ensure that the sulphur content of the fuel oil used on board the vessel does not exceed:

1. 1.00% by mass before January 1, 2015, in the case of a Canadian vessel or a Canadian pleasure craft that is operating in waters under Canadian jurisdiction other than arctic waters;
2. 0.10% by mass after December 31, 2014, in the case of a foreign vessel or a foreign pleasure craft that is operating in waters under Canadian jurisdiction other than arctic waters;
3. 0.10% by mass after December 31, 2014, in the case of a foreign vessel or a foreign pleasure craft that is operating in waters under Canadian jurisdiction other than arctic waters;
4. 0.10% by mass after December 31, 2014, in the case of a Canadian vessel or a Canadian pleasure craft that is operating in waters under Canadian jurisdiction other than arctic waters;
5. 0.05% by mass before January 1, 2015, in the case of a Canadian vessel or a Canadian pleasure craft that is operating in waters under Canadian jurisdiction other than arctic waters;
6. 0.05% by mass before January 1, 2015, in the case of a Canadian vessel or a Canadian pleasure craft that is operating in waters under Canadian jurisdiction other than arctic waters.

This brings Canadian enforcement of the North American ECA requirements in line with current enforcement by US authorities, and effectively make compliance mandatory in all areas of the ECA. Members and clients are advised that:

- It is essential that accurate records are maintained on board in order to be able to demonstrate compliance with the new requirements at any time during routine Port State Control inspections. Documents which may be requested are bunker delivery notes, representative fuel oil samples, written fuel oil changeover procedures and the fuel changeover logbook.
- Every effort must be made to acquire compliant fuel before commencing a voyage to Canada, as well as at ports en route to Canada. However, if a vessel is unable to acquire compliant fuel oil, copies of all correspondence between the involved parties must be kept, including correspondence between the vessel’s operators, agents, bunker suppliers, bunker brokers and charterers and log entries made when the vessel enters and exits the ECA, with date, time and position noted.

Please refer to Transport Canada’s webpage: http://www.tc.gc.ca/eng/mediaroom/backgrounders-vessel-pollution-regulations-7162.html for a description of all amendments to the pollution regulations.

Footnotes
1 See previous Gard Alert from 20 July 2012: Canada delays implementation of the North American ECA requirements.
2 The North American Emission Control Area (ECA) covers waters within the jurisdiction of the US, including Hawaii and Alaska south of 60°N. It also covers Canadian territorial waters south of 60°N and extending approximately 200 nautical miles out to sea, as well as French territorial waters around the islands of St. Pierre and Miquelon. The geographical limits of the North American ECA can be found in Appendix VII of MARPOL Annex VI and in IMO Circular MEPC.1/Circ.723. 3 As an alternative to using low sulphur fuel oil, shipowners and operators may choose to equip their vessels with exhaust gas cleaning devices (scrubbers) in accordance with MARPOL Annex VI Regulation 4 and the corresponding emission values for a fuel oil sulphur content of 1.0% is a ratio of 43.3 SO2ppm/CO2. Any such equivalent methods must be approved by the vessel’s Flag Administration.
Hull and machinery incident
- Consequences of using off-specification bunkers

Another example of the importance of sampling and testing bunkers.

Bunkering
A medium-sized bulk carrier was delivered HFO (heavy fuel oil) bunkers whilst at anchorage at a port in the Far East. Since the vessel was scheduled to sail to Europe, and due to the prevailing fuel prices, charterers decided to bunker the vessel to almost full capacity. The operation itself took several hours and was completed without problems. However, the vessel did not take its own fuel samples during the bunkering, but instead received two sealed samples from the barge operator. Both samples were signed by the vessel’s chief engineer; however, neither of the samples was sent ashore for further analysis.

The fuel delivered was specified as 380cst -RMG 35, which was in accordance with the applicable charterparty.

Problems
Soon after leaving port, the engineers started using the new bunkers. Shortly thereafter, they experienced abnormal sludge generation in the purifier, which resulted in excessive water-sludge content in the settling and service tanks. A large amount of water and sludge was drained from these tanks. The amount of water and sludge also resulted in problems with the performance of the main engine, in the form of fluctuations in exhaust temperatures, as well as a rise in the scaveng e temperatures of the various units. The main engine fuel pumps and fuel injection valves also sustained some damage.

In order to prevent any power failure, the fuel consumption of the auxiliary engines was switched to diesel oil. The engine crew switched the fuel consumption to another double bottom tank, containing the newly bunkered HFO, but with the same result. Consequently, the engine crew had to consume the recently bunkered HFO for the propulsion machinery as nothing else was available and as a result the vessel had to reduce speed and slow steam to the next port, which was 12 days away. It took several days to reach the next port whilst maintaining reduced speed. They also had to stop several times each day to replace fuel valves, fuel pumps and to clean filters and change exhaust valves dealing with turbocharger problems. The service and settling tanks were being drained almost continuously.

Repairs
The vessel finally arrived at the next port of call several days late. The owner decided to pump the off-specification bunker ashore and ordered new bunkers. During the vessel’s stay in port, various repairs were carried out to the main engine. All pistons were dismantled and overhauled and piston rings were replaced. Several of the piston top rings were broken whilst one was badly worn. One of the cylinder liners was cracked and had to be replaced. The main engine fuel system and turbocharger had to be completely overhauled and the settling and service tanks had to be emptied and cleaned.

Several fuel samples were taken during the vessel’s stay in port and sent ashore for testing, which revealed that the fuel was off-specification. The whole operation became very costly, time-consuming and caused delays to all involved.

Lesson learned
It is strongly recommended that:
- the crew ensure there is sufficient quantity of tested reserve HFO on board for consumption to cover the time delay involved in sending newly-bunkered representative samples for testing and receiving the laboratory test results.
- the crew take sufficient representative samples of bunkers received and send them ashore for testing.
- laboratory test results for newly received bunkers are known before consuming the bunkers.
The importance of an efficient fuel oil treatment system

Fuel-related engine breakdown is not a novel problem, and even as more stringent rules, regulations and procedures are implemented, Gard regularly sees engine casualties where the cause can be traced to poor fuel quality or poor on-board fuel treatment. This article will focus on the latter.

The current international standard for heavy fuel oil (HFO) to be used in marine diesel engines and boilers is ISO 8217:2005. It defines limit values for a large number of substances and impurities which the HFO can contain. However, even if the HFO received satisfies these requirements, operational problems may occur if the HFO separators are not properly operated and maintained.

HFO contains catalytic fines such as aluminium and silicon oxides, which are remnants from the refining process. These are hard abrasive particles, and ISO 8217:2005 regulates the amount of catalytic fines permitted in HFO, expressed as Al+Si, to 80 mg/kg (ppm). However, due to the abrasive nature of these particles, most engine manufacturers limit the amount of catalytic fines in the fuel injected into the engines to 15 mg/kg. Excessive wear of components in the combustion chamber (piston grooves, piston rings, cylinder liners) and of the fuel injection equipment (fuel pump plunger and barrel, fuel injection valves), will be the consequences of exceeding the level of catalytic fines of 15 mg/kg.

In order for the HFO separators to efficiently reduce the level of catalytic fines and other impurities that can be present in the fuel oil, such as rust, sand, dust and water, the following precautions should be taken:
- Keep the HFO inlet temperature at 98°C. The efficiency of the separators is highly dependent on the inlet temperature of the fuel, and even a

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Date ddm-myy</th>
<th>Bunker Port or Fuel System Position</th>
<th>Dens kg/m3 @15°C</th>
<th>H2O % v/v</th>
<th>S % m/m</th>
<th>V mg/kg</th>
<th>Na mg/kg</th>
<th>Al mg/kg</th>
<th>Si mg/kg</th>
<th>Fe mg/kg</th>
<th>TSP % m/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>F307003850</td>
<td>260209</td>
<td>ULSAN</td>
<td>977.4</td>
<td><0.10</td>
<td>3.06</td>
<td>54</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td><0.01</td>
</tr>
<tr>
<td>F307004249</td>
<td>180309</td>
<td>SINGAPORE</td>
<td>987.0</td>
<td>0.30</td>
<td>2.93</td>
<td>217</td>
<td>31</td>
<td>15</td>
<td>17</td>
<td>12</td>
<td>0.03</td>
</tr>
<tr>
<td>F307005251</td>
<td>170309</td>
<td>SINGAPORE</td>
<td>989.8</td>
<td>0.16</td>
<td>3.38</td>
<td>190</td>
<td>17</td>
<td>14</td>
<td>15</td>
<td>10</td>
<td>0.03</td>
</tr>
<tr>
<td>F407006350</td>
<td>200409</td>
<td>ANTWERP</td>
<td>984.2</td>
<td><0.10</td>
<td>2.04</td>
<td>90</td>
<td>15</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td><0.01</td>
</tr>
<tr>
<td>F407006372</td>
<td>260409</td>
<td>ROTTERDAM</td>
<td>989.7</td>
<td>0.11</td>
<td>1.31</td>
<td>66</td>
<td>11</td>
<td>30</td>
<td>25</td>
<td>13</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Bunker tank in use: Port Fwd 11 F. Centrifuge operation: Parallel.

The fuel in use is indicated as being the fuel bunkered in: ROTTERDAM on 26th April 2009.

The sample taken at the transfer pump indicates low levels of sludge and water and somewhat high levels of impurities. Compared with the bunkering sample some settling of impurities appears to have taken place in bunker tank(s).

Water and sediments remain at low levels throughout the fuel system.

Sample after Separator 1:
The somewhat high levels of solid contaminants have been reduced to acceptable levels for diesel engine use.

Sample after Separator 2:
The levels of solid contaminants have been reduced but still on the high side for consumption, hence some marginal increase of wear in cylinder gear and injection equipment may be expected.

NB. Please ensure that fuel treatment is operated at optimum condition with centrifuges in parallel using the lowest possible throughput while keeping the fuel temp. near to 98°C.

NB. As always when ‘Cat-fines’ and water are detected – Frequent bottom draining of all tanks and filters in use is advisable.
small reduction in temperature will reduce the quality of separation. The recommended inlet temperature is 98oC, but this is often not achieved due to limited steam supply to the pre-heaters, wrong set point, the pre-heaters being too small, fouled or in other ways defective.

– Use correct flow ratio. The longer the fuel is present in the separator, the better the cleaning of the fuel oil will be. Since the 1980s, separators without gravity discs have been more or less standard, and it is recommended to always use all available HFO separators and to run them in parallel, with corresponding feed rate. If the separators are of the manual type with gravity discs, they must be operated in series with a purifier followed by a clarifier, but with the lowest possible flow.

Further to the above recommendations, it is also important that the quality of the on-board fuel treatment has a strong focus from owners’ and managers’ side. Regular monitoring of the performance is vital to ensure that the systems on board are capable of handling the HFO supplied at all times. Important issues in this context are:

– Educate and train responsible personnel. Ensure that the junior engineers responsible for the operation and maintenance of the separators are properly trained and are familiar with the equipment and how to perform the regular maintenance. This increases reliability, and also reduces the consumption of non-wear parts.
– Check fuel system efficiency. To verify that the fuel treatment system really works as it should, procedures should be implemented where fuel samples are taken before and after each separator at intervals of four to six months. The samples should be sent to an established fuel analysis institute, and the result will provide an indication of the efficiency of the separators. The analysis will be most accurate if performed once the analysis of the regular bunker manifold sample confirms that a certain amount of cat fines is present in the bunkered fuel oil. Above 25-30 mg/kg is preferable. The results of the analysis gives owners/managers regular verification of the quality of operation and the superintendent can, in co-operation with the chief engineer, discuss relevant actions if required. Picture 1, below, is an example of such an analysis.

By following the above recommendations, the fuel treatment system should operate with optimum efficiency, which will increase the likelihood of the engines having an acceptable level of wear, and reduce the risk of casualties creating costly business interruption losses.

Read more about fuel oil in Gard News:
– “Liquid gold – Fuel oil and lubricating oil” in issue No. 156.
– “The quality of bunkers” in issue No. 163.
– “Some technical aspects of marine fuels testing” in issue No. 165.

An efficient fuel treatment system reduces the risk of casualties.
Gard News has a look at some of the challenges of compliance and potential consequences of non-compliance with MARPOL Annex VI.

What is MARPOL Annex VI?
MARPOL Annex VI is a section of the International Convention for the Prevention of Pollution from Ships, 1973, as modified by the Protocol of 1978 relating thereto (MARPOL 73/78), drafted by the International Maritime Organization (IMO).

The individual sections of the convention entered into force at different times as they gained the required number of signatory states. For example, MARPOL Annex I, regulations for the prevention of pollution by oil, have been in force for more than 20 years. Annex VI, regulations for the prevention of air pollution from ships, entered into force on 19th May 2005. Presently 37 countries have ratified Annex VI covering 70 per cent of the global tonnage.

Annex VI sets limits on sulphur oxide (SOx) and nitrogen oxide (NOx) emissions from ship exhaust and prohibits deliberate emissions of ozone depleting substances. The Annex places a global cap on the sulphur content of fuel oil at 4.5 per cent m/m (percentage by mass) and a 1.5 per cent m/m cap in “SOx Emission Control Areas” (SECA). The Baltic Sea is currently defined as a SECA. In July 2005 the IMO adopted amendments which identify the North Sea as a SECA, with an implementation date of November 2007. Annex VI also prohibits the introduction into fuels of inorganic acids or chemical wastes that could jeopardise the safety of the ship, or harm ships’ personnel.

2. See article “MARPOL Annex VI – Solving the low sulphur issue” in Gard News issue No. 184.

In order for flag and port states to monitor compliance with the regulations, MARPOL Annex VI requires a bunker delivery note to be obtained and retained on board stating the sulphur content of the bunkers supplied, as well as samples of the oil. Fuel oil suppliers that are located in MARPOL Annex VI signatory states are subject to the regulations but those in non-signatory countries are not subject to oversight by the port state authorities.

The challenges of compliance and potential consequences of non-compliance
An article written by a DNV expert and published in Gard News issue No. 184 outlines some of the possible dangers for owners and charterers that arise from non-compliance with MARPOL Annex VI.

© Gard AS, January 2014
problems with low sulphur fuels and with the addition of the North Sea SECA. Among those issues identified are ignition and combustion problems due to the low sulphur content and an increased presence of catalytic fines, abrasives that can damage the engine. Toxic materials may find their way into fuels. Such materials can lead to personal injury of crew or others aboard or on shore. DNV has also questioned the market availability of sufficient low sulphur bunkers due to the addition of the North Sea SECA. Finally, as an operational problem DNV has identified the difficulty of timing a change over to fuel required to enter and operate within a SECA. Even with the required fuel on board, a mistimed or improperly executed change over will result in violations within a SECA.

In the event that the fuel does not meet the low sulphur requirements, port state or flag state authorities may require deviation, de-bunkering and replacement of fuel, causing delay and additional costs. MARPOL violations may also result in fines against the vessel. Reportedly, enforcement activity has, to date, been light but if history with respect to MARPOL Annex I serves as an example, penalties will increase if the industry is slow to comply.

The vessel owners’ and charterers’ responsibilities for compliance

When the vessel is under a time charter, at a minimum the following parties will be involved in bunkering: shipowner, time charterer, bunkers broker and physical supplier. As a starting point, compliance with MARPOL Annex VI is the responsibility of the vessel owner. Ultimate liability for the consequences of off specification fuel, however, may be subject to contract indemnity provisions commonly found in time charterparties, or liability may rest with the supplier depending upon the terms of a sales contract. At least under English law, the bunker broker is ordinarily considered the agent of the purchaser and is not a party to the bunker sales contract and is therefore not generally subject to liability.

The time charterer is ordinarily obliged to purchase the bunkers pursuant to various forms of charterparty clauses. Typically a bunker clause will refer to a specific grade of fuel that meets “ISO 8217 Third Edition 2005” specifications. This standard was amended in 2005 to track MARPOL requirements, including the sulphur limits and elimination of waste oils. Bunkers clauses would also typically warrant that bunkers supplied by charterers comply with MARPOL requirements as well as any special regional requirements where the vessel may trade. The United States is not currently a signatory to Annex VI but California, for example, has its own standards and requirements for ship stack emissions.

As an addition to fuel specification, BIMCO has published a clause that is intended to balance the rights and responsibilities of owners and charterers. Pursuant to this clause the charterer will be liable to the owner when the physical supplier has delivered non-compliant bunkers. If the bunkers supplied are compliant, the owner will be responsible for the consequences of operational failures such as failure to timely change over to low sulphur fuel before entering a SECA which results in sulphur content in excess of 1.5 m/m.

The bunker’s sale contract and possible recourse against the bunker’s supplier

The business of supplying bunkers is said to be one of slim margins. Yet the commodity is essential. Suppliers generally have the upper hand with respect to dictating the terms of the sales contract. Suppliers in MARPOL signatory countries do have an obligation to comply with the Annex VI requirements and should not have an issue with wording in the sales contract that confirms the obligation.

The buyer is responsible for specifying the quality ordered and should ensure that the bunkers sale is ordered and confirmed as: “fully in accordance with ISO 8217 Third Edition 2005 and MARPOL Annex VI” and any other specific regional requirement for ports where the vessel will call. When fuel is required for a SECA, the following should be added: “and with maximum sulphur content of 1.5 per cent.” Additionally, the contract should state that “the supply procedures shall comply in all respects with the requirements of MARPOL Annex VI regulations in respect of sampling and documentation including the bunker delivery note”.

It takes time to analyse fuel, so it may not be practical or possible to independently test quality before delivery. The bunker delivery note requires the supplier to declare the sulphur content of the bunkers delivered and MARPOL does not require the supplier or the vessel to analyse the product before acceptance but, instead, merely requires sampling and retention of samples for analysis should there later be a question as to compliance. But testing should be done in any event to make sure the bunkers supplied meet the specifications. Sampling should be witnessed by vessel personnel or a designated surveyor and samples should be taken at the ship manifold. It is not recommended to accept samples from the supplier that have not been witnessed. Ideally, the sale contract should include an agreement to the test protocol and lab for the analysis.

If the fuel is ultimately determined to be off-spec, can the buyer seek recourse against the seller for additional costs or liabilities they may have? Yes, but often the sale contract contains provisions that either extinguish the claim or limit it. Bunker supply contracts are notorious for extremely short claim notification limits. Seven days from delivery is common. The short window for claims against the supplier underscores the importance of immediate analysis and notice to the supplier. Another common clause limits the claim to the value of the bunkers supplied which will be insufficient to cover losses such as damage to an engine.

The bunker sale contract should contain a dispute resolution clause which also specifies law and jurisdiction. In an ideal world, the forum would be the same in the charterparty and the bunker sale contract: for example, English law and arbitration. That way, in the case of dispute, all three parties could be brought into one proceeding. In the real world, the contract between owner and charterer and the charter between charterer and bunker supplier are both based on form contracts and favoured terms which may not be negotiable.

P&I and Defence cover respond to the new risks

Gard’s Defence cover provides compensation for legal and other costs pertaining to disputes related to MARPOL Annex VI non-compliance, whether under charterparties or bunker sale contracts, and whether pursuing or defending such claims. The Defence cover also includes fees and expenses due to claims by authorities for fines whether they are presented directly or via a charterparty indemnity provision. Gard’s lawyers and solicitors may also assist in advising members concerning contract provisions before a claim arises.

Damage to the ship itself is not an owners’ risk under P&I (but may be an insured risk under hull and machinery
insurance). Gard’s Comprehensive Charterers P&I Cover, however, includes charterers’ liability for damage to hull. Thus, liability for physical damage to the vessel caused by bunkers, and de-bunkering costs, if in mitigation of liability for damage to the vessel, are covered risks under the charterers’ P&I policy. Liability for personal injury due to toxic substances to persons on board or ashore is a covered P&I risk. Rule 38 of Assuranceforeningen Gard’s Statutes and Rules covers liability for pollution (with the exception of fines) caused by stack emissions whether it is direct liability or via indemnity under the charterparty. Legal costs associated with any of these covered risks are also picked up by Gard provided such costs are approved by Gard.

P&I cover for fines is narrow. Under Rule 47.1.c, pollution fines are covered if they arise from an “accidental escape or discharge” of a pollutant from the vessel.

Fines for stack emissions exceeding the MARPOL cap may not be considered “accidental” in that the emission itself is intentional. Fines may be considered for discretionary cover on a case-by-case basis under Rule 47.2, provided “the member has satisfied the Association that he took such steps as appear to the Association to be reasonable to avoid the event giving rise to the fine”.

Finally, costs associated with delay, detention and deviation are not covered under owners’ P&I. Charterers’ liability for delay is covered if in consequence of damage to the hull caused by off-specification bunkers. Loss of use claims are of course subject to the Defence cover with respect to owners and charterers.

Conclusion
The focus on air pollution, including stack emissions reflected in the MARPOL requirements, will no doubt increase. Bunker quality claims under sale contracts and charterparties will certainly grow in number and value. Owners and charterers can meet these new challenges with practical loss prevention measures on both a technical and legal basis. Gard is here to help its members meet the new challenges.
Marpol Annex VI - Solving the low sulphur issue

By Olav Tveit, DNV Petroleum Services

With the entry into force of the North Sea SECA there will be increased pressure on charterers and operators to provide ships with low sulphur fuel oil.

Background

MARPOL Annex VI, Regulations for the Prevention of Air Pollution from Ships, entered into force on 19th May 2005. MARPOL Annex VI Regulation 14 restricts SOx emissions from ships by introducing a maximum sulphur content in marine fuels of 4.5 per cent. In addition, MARPOL Annex VI identifies SOx emission control areas (SECA). In these areas the maximum sulphur content of marine fuels used is 1.5 per cent. The Annex also set forth requirements for documentation and representative sampling of fuel oil.

EU Directive 2005/33/EC deals with issues similar to those in MARPOL Annex VI, although its dates for implementation do not coincide with those of Annex VI. It also provides for a maximum sulphur content in marine gas oils of 0.2 per cent from 11th August 2006. Further, there will be a reduction of sulphur content of marine fuels for vessels at berth in EU ports, the entry into force date being 2010, with the maximum sulphur content from that date being 0.1 per cent. Other implementation dates are as follows:

- On 19th May 2006 the Baltic Sea SECA under IMO came into force. On 11th August 2006 the Baltic Sea SECA became enforceable by EU member states. On 11th August 2007 the North Sea SECA will become enforceable by EU member states. On 21st November 2007 the North Sea SECA enters into force under IMO.

Bunker management

There is uncertainty as to whether suppliers will be able to meet the demand for low sulphur fuel oil (LSFO) in main bunker ports world-wide. What is clear today is that operators with a contract for LSFO in general have their demands covered by the majors/larger independents at main bunker ports at a premium of USD 30-50/MT. Fortunately, it appears so far that the demand has been met with respect to the Baltic Sea SECA. There is, however, uncertainty as to whether world-wide supply will be sufficient when the North Sea SECA enters into force next year.

Needless to say, the pressure on charterers and operators to provide ships with LSFO will increase. As a result, bunker management will be more complex. It is also vital that owners/charterers and bunker purchasers ensure that MARPOL Annex VI clauses (Regulations 14 and 18) are included in their charterparties and bunker purchase confirmations. INTERTANKO has developed contract clauses that may be suitable in this respect.¹

Bunker quality

In order to produce LSFO refineries have the following options:
- Use inherently low sulphur crude stocks.
- Invest in de-sulphurisation units.
- Blend to LSFO specification, using a variety of cutter stocks, inland quality LSFO or purchased inherently LSFO.

The blending option seems to be the preferred future method. Regrettably, it appears that this option is also the one which could impact the bunker quality in a negative way as explained below.

Increased stability and compatibility problems

The more you blend, the greater the risk of making products unstable. This should be detected through fuel quality testing (total sediment potential). However, if products are blended on the stability limit, subsequent mixing on board with an existing fuel with different properties (e.g., viscosity, density) or gas oil/diesel oil could lead to unstable fuels and subsequent sludging. The risk increases during LSFO change-over, depending on system configuration.

Sulphur content deviations

In some cases certain ports blend to the sulphur limit of just below 4.5 per cent. From time to time, the 4.5 per cent limit may be exceeded, although marginally. Some samples tested also exceed the 1.5 per cent limit, although in most cases only marginally. The IMO has not yet provided guidance as to whether an allowance can be made, like for instance whether 1.54 per cent can be acceptable as 1.5 per cent. Currently this is left to the discretion of the individual port and flag states.

Some suppliers and certain testing companies introduce a default standard margin of error (reproducibility). It is argued that deviations above 4.5 per cent or 1.5 per cent would be caused by a default margin of error during testing. The problem is that the concept of margins of error has not been discussed at IMO so one can not say whether authorities will accept any result above 1.5 per cent in a subsequent flag or port state control. Hence, until further notice it is recommended that any indication of sulphur levels above 4.5 per cent or 1.5 per cent respectively should be accompanied by a notification to the flag administration, bunker port administration and supplier according to the requirements of the IMO Port State Control Guidelines for MARPOL Annex VI.²

Following the ISO 4259 standard, for a supplier to be 95 per cent confident that the fuel delivered will have a sulphur level of 1.50 per cent, the suppliers’ target should not be higher than 1.42 per cent.

Considering the possible margin of error, as well as the aspect of fuel oil change-over, owners should consider whether a limit of 1.5 per cent in orders is sufficient or whether they should specify a lower sulphur limit.

Increased levels of catfines (AI/SI)

With decreasing sulphur content there may be an increasing level of catfines. This may be due to an increased use of cycle oils as cutter stock in the fuel blend (cycle oils are a low sulphur, highly viscous refinery product which tends to contain an elevated amount of catfines).

Increased ignition and combustion problems

Increasing ignition and combustion problems may also occur when using LSFO. This could be related to an increased use of high density and high aromatic cycle oils as cutter stock during blending.
Bunker deliveries

MARPOL Annex VI has not yet been subject to significant enforcement and as such the stringency applied is uncertain. It is recommended that ships adhere to the MARPOL Annex VI sampling procedures and documentation requirements as laid down in IMO Resolution MEPC 96(47). At the recent IMO MEPC 54 meeting a circular was adopted urging IMO member states to ensure that bunker suppliers within their jurisdiction apply this resolution.

As a minimum, the crew must verify the sulphur content in the bunker delivery notes and that the official MARPOL sample is representative of the bunker supplied. In accordance with the IMO Port State Control Guidelines for MARPOL Annex VI, any non-compliance must be reported through a notification to the flag state and the bunker port authorities.

High sulphur fuels

It is of vital importance that operators specify and crew verify that the sulphur level in the bunker delivery note is below the respective MARPOL limits.

In the event a fuel testing company detects a sulphur level which exceeds the MARPOL limits and is above that specified in the bunker delivery note, the following course of action should be taken:

- A notification should be sent to the flag state and the bunker port authorities, highlighting the indicated sulphur level deviating from the bunker delivery note level.
- It would be unreasonable for the administration to require the ship to deviate due to a possible non-compliance for which a supplier is responsible. The operator should therefore request that the ship be permitted to proceed to the next port of call.
- The operator should agree with the flag state administration regarding verification testing of the on board MARPOL sample (the on board MARPOL sample is the official sample which is legally binding). If the supplier’s MARPOL sample has not been taken in accordance with the IMO sampling guidelines, then the operator should propose to test the ship’s MARPOL sample (if taken) as well. It is the prerogative of the administration to select an appropriate laboratory for the purpose of verification testing. However, the administration should be encouraged to select a laboratory which is accredited with respect to the ISO sulphur test method and has documented experience with fuel testing. The laboratory should, in addition to sulphur, also test for fingerprint parameters such as density, viscosity, nickel and vanadium. The MARPOL sample should be forwarded to the laboratory in question. The result is to be communicated to the administration, which is subsequently obliged to inform the bunker port state administration.
- In case non-compliant fuel is detected, de-bunkering is not the only option available. As an emergency measure, provided existing fuel is on board and it is verified compatible with the new fuel, the owner may request acceptance for on board blending (depending on sulphur differences, the blending ratio could be very low). This procedure has been successfully adopted and accepted by at least two administrations.

Fuel change-over

Fuel change-over contains both commercial and statutory compliance elements. On the commercial side, with a premium of up to USD 30-70/MT, the change-over from normal to LSFO and vice-versa should be as fast as possible. On the statutory compliance side, owners need to be confident that the crew has managed to change over from normal to LSFO before crossing the SECA boundary.

With a high sulphur limit of 4 per cent and a LSFO level of 1.49 per cent, reaching the required 1.5 per cent limit will take time, if it can be done at all.

Although not yet specifically required, realistic and proven change-over procedures should be developed for each ship or group of ships with similar fuel tank configuration and system set-up.

The pre-requisite for change-over is the exact sulphur level of existing fuel and LSFO, i.e., a bunker delivery note sulphur level set as “less than 4.5 per cent” and “less than 1.5 per cent” should not be accepted as it creates uncertainty regarding change-over time (in addition to uncertainty regarding the selected base number (TBN) of the cylinder lube oil used on board).

Some owners have converted their ships by dedicating a bunker tank to LSFO with separate bunker line, as well as introducing separate LSFO service and settling tank with piping ensuring split separator operation. This option means that the change-over can be carried out quickly.

However, the majority of ships have conventional fuel oil systems with a limited number of bunker tanks and only one service and settling tank. For these ships the main contributors to change-over time are the following:

- Total consumption (main engine + auxiliary engines + boilers).
- Total volume of high sulphur fuel oil remaining in piping systems, settling and service tanks prior to change-over.
- Initial high sulphur level and LSFO level.
- Transfer pumps capacity.
- Separators capacity versus total consumption.
Cylinder lube oil
Oil and engine manufacturers have varying requirements and recommendations. In general there are two alternatives related to cylinder lube oil during LSFO operation:
- Feed-rate regulation.
- Change of cylinder lube oil.

Some shipowners have flagged their intention to continue operating with TBN 70 cylinder lube oil at LSFO down to 1 per cent, by feed-rate regulation, provided not already on the limit. This alternative also appears to be supported by engine manufacturers, provided the operation on LSFO is limited to approximately 1-2 weeks.

There are, however, examples of shipowners who have operated with reduced feed rate on South American LSFO for instance down to 0.5 per cent over approximately a month without experiencing any excessive deposits or wear.

However, some owners have decided to make modifications on board and install redundant service tanks: one for TBN 70 and one for TBN 40/50 with a three-way switch-over valve in-between.

Regardless of alternative chosen, it is recommended that the crew perform periodical checks of cylinder condition (including ring-pack) shortly after change-over. As always, the quality of the cylinder lube oil regarding thermal stability, detergency and dispersion is also essential.

Abatement technology (exhaust gas cleaning)
Recent developments are encouraging, as at least three concepts are now in a prototype test stage either on board ships or on test beds. At least two of these prototype concepts have shown very promising results. Some manufacturers have shown increasing interest in the commercial feasibility of exhaust gas cleaning concepts. Needless to say, it will be some time before they are commercially available.

One additional challenge is future requirements (particularly EU and US requirements) for handling of waste water from such units before discharge to sea.

Although the investment is high, exhaust gas cleaning systems have the advantage of eliminating the LSFO premiums as well as bunker management complexity. Further, they will reduce the particulate matter in the exhaust, for which new legislation is coming soon.

Marpol Annex VI – Challenges in operating on low sulphur fuel

Background
International regulations to control harmful emissions from ships’ exhausts entered into force on 19 May 2005. MARPOL Annex VI contains provisions allowing special “SOx Emission Control Areas” (SECAs) to be established with more stringent controls on sulphur emissions. In these areas, the sulphur content of fuel oil used onboard ships must not exceed 1.5% m/m. Alternatively, ships must fit an exhaust gas cleaning system or use other methods to limit SOx emissions. The regulation requires any such alternative methods to be approved by the relevant flag state. Sanctions for Marpol violations are becoming increasingly severe around the world, and there is no reason to believe Annex VI will not be treated to the same scrutiny.

The regulation allowed for a 12-month period from the date of entry into force before the limits within a SECA could be enforced, and they will thus be enforced from 19 May 2006. The Baltic Sea Area is the first area designated as a SECA under the Protocol and will permit a maximum 1.5% sulphur content in any fuel used onboard. In 2007, the second SECA, covering the North Sea and English Channel, will be come into force, requiring similar sulphur levels.

The effects of low sulphur fuel
There are several implications of operating on low sulphur fuel or altering between high and low sulphur fuels. The issues listed below are some of the most common challenges that must be considered by the shipowners and operators to avoid problems related to operation and maintenance of the ship engines.

Fuel related issues
- Incompatibility of different fuels
- Combustion characteristics and impact on engine deposits and wear
- Varying fuel viscosity, and impact on fuel injection
- Low sulphur fuel having less anti-wear capability

Operations related issues
- Monitoring sulfur content in fuel
- Engine load
- Cylinder Liner Temperature
- Water content in scavenge air

Recommendations
Shipowners and operators should thoroughly consider all undesired effects of operating on low sulphur fuel. It is recommended that the engine makers and the lube oil suppliers are contacted to obtain their detailed instructions and guidelines. Specifically worded charterparty clauses regarding bunkers supplied by Charterers are important to ensure that any problems are avoided.

Loss Prevention Circular
No. 06-06

- Supply and storage for low sulphur fuels
- Matching cylinder oil BN fuel sulphur level across operating conditions
- Possible additional storage tanks
- Cylinder lubrication monitoring
- Cylinder oil feed rate

Lube oil related issues
- Water content in scavenge air

© Gard AS, January 2014
Off-spec bunkers – Some practical cases

Gard has recently assisted two charterers in the handling of claims arising from delivery of off-spec bunkers. These cases show how important it is for both charterers and owners to have a good bunker testing system in place.

Damage to fuel injection pumps

The first case concerns a general cargo vessel, whose main engine had undergone a complete overhaul whilst the vessel was dry-docked. The bunker tanks were cleaned and all sediment removed. Following that, the vessel took delivery of 170 MT of bunkers at Rotterdam for a round trip to the Mediterranean and return to Norway. The bunkers were put into fuel oil tanks No. 6 starboard and port and, in accordance with the Baltic charterparty, were provided and paid for by the charterers.

When the vessel started to take fuel from tanks No. 6 port and starboard during the voyage, she experienced severe problems with sediment. The problems continued for the rest of the trip and on arrival in Kristiansund, Norway, assistance from the engine manufacturer was needed. A without prejudice joint survey was arranged, which was attended on behalf of the owners, charterers and bunker suppliers. Fuel oil samples were taken from the relevant tanks, a survey of the vessel’s engine and all relevant machinery was performed and an investigation into the cause, nature and extent of the damage was carried out.

The engine manufacturer’s representative concluded that all 18 fuel injector pumps had to be replaced. The damaged pumps and valves were sent to the engine manufacturer’s plant in Denmark for overhaul/repairs, and a joint survey was also carried out there. Sixteen of the fuel oil pumps were dismantled for further examination. Fifteen of the pistons were found to be brown-coloured, one was found to contain water drops, some were found with corrosion and several pump hoses contained water. Due to the corrosion and browning, the manufacturer advised replacement of all the pistons and cylinders, which were replaced with reconditioned fuel oil pumps.

It was considered whether there could have been leakage between the ballast and fuel oil systems. According to the ship’s plans, there was no direct connection between them and no ballast pipes were routed through the fuel tanks. There was also no evidence of oil in the ballast water. Furthermore, the tanks were reported to be tight and in order during a recent overhaul. This possibility was therefore ruled out.

The surveyor’s conclusion was that the damage was probably caused by water in the fuel.

Based on the entries in the engine room’s log book, it was evoked that there had been a certain quantity of water in the fuel oil tanks No. 6 starboard and port. How the water entered the tanks, however, had not been established.

The owners put the charterers on notice that they held them responsible for all costs incurred and time lost during the period the vessel was out of service due to supply of inferior bunkers. The charterers in turn held the bunker supplier responsible.

The bunker supplier rejected liability, relying on an analysis of a sample of the fuel oil taken from the vessel after the bunker delivery. This analysis confirmed the bunkers delivered to the vessel were within specification. The test sample taken from the bunker barge had been lost and samples from the fuel in tanks No. 6 port and starboard which purportedly showed that they were contaminated with water, could no longer be traced.

Fortunately for charterers, in this case the owners did not have a system in place to take bunker samples for analysis when bunkering, so no samples of the bunkered fuel were available. As a result, the owners had no evidence and therefore no case against the charterers and had to bear the losses.

High Total Sediment Potential

The second case concerns a 1995-built bulk carrier which was time-chartered under a NYPE 1993 form. The vessel was sub-chartered and upon re-delivery sub-charterers supplied the vessel with 900 MT of IFO, which was taken into DB tanks Nos. 1 and 2.

The shipowners had an agreement with Det Norske Veritas Petroleum Services (DNVPS) for testing bunker samples, so a sample of the fuel oil was mailed to Det Norske Veritas Petroleum Services (DNVPS) for analysis. A fuel quality report was sent to the owners, which showed a Total Sediment Potential (TSP) of 0.22, the standard TSP being 0.10. DNV advised that at this level of TSP, increased sludging was likely to occur and fuel stability was at risk. They advised the owners to purify the fuel, not to mix it with any other fuel and to take and retain periodic samples before and after centrifuging and record the sampling details in the logbook.

Charterers were put on notice that owners held them responsible for the consequences of supplying off-spec bunkers, including the cost of de-bunkering if required and any damage to the vessel’s engine. The head charterparty included detailed and comprehensive clauses concerning responsibility for delivery, quality, testing and analysis of bunkers, but these clauses were not included in the sub-charter.

The vessel sailed for Richards Bay to load a cargo for Praia Mole, Brazil. During the voyage, the master advised that the vessel was experiencing a critical situation on board in trying to purify the off-spec bunkers. For safety reasons, he decided to deviate to Port Louis, Mauritius, which was the nearest port with enough bunkers to enable the ship to reach Richards Bay safely. The owners requested charterers to make provisional arrangements for de-bunkering. Charterers put the sub-charterers on notice, requested them to make the necessary arrangements to take the inferior bunkers ashore and re-supply at Port Louis. The sub-charterers did not admit any liability for the problems experienced by the vessel, but advised they would appoint a surveyor to inspect the vessel and bunkers.

Accordingly, the charterers had little choice but to arrange delivery of fresh bunkers at Port Louis, so it was decided to de-bunker the off-spec bunkers at Richards Bay. Charterers invited the shipowners and sub-charterers to take part in a survey of the vessel’s engines and purifiers at Richards Bay and a without prejudice joint survey of the sealed samples held on board by the master for charterers’ use was arranged, and the fuel in the vessel’s tanks was tested.
Owners and charterers agreed to use an independent laboratory to analyse the fuel oil samples. The sub-charterers appointed a different laboratory to carry out their analysis. Surveyors were instructed to attend the laboratory to witness the sample analysis. The owners and charterers’ surveyor monitored the analysis done on behalf of the sub-charterers and vice versa. In addition, an analysis was also carried out by a third independent company.

Owners and charterers’ analytical report from tanks Nos. 1 and 2 confirmed a TSP of between 0.13 and 0.21. The analysis of the sub-charterers and the independent laboratory showed TSP of between 0.04 and 0.05. According to technical experts, however, the analysis method used by sub-charterers and the independent laboratory was unacceptable as the tests were not in accordance with IP 390 specifications, in which case, the fuel oil supplied was indeed off-specification.

The vessel had three IFO tanks, two large ones and one smaller one. The third, smaller tank was not big enough to take the amount of bunkers required for a safe passage to Praia Mole, so since it proved impossible to arrange de-bunkering at Richards Bay, there was no other alternative but to proceed to Cape Town and de-bunker there, thus incurring further costs and delay. Tank cleaning was not possible because the vessel was loaded with coal, which meant access to the tanks was blocked. However, a bunker quality/quantity survey of the 675 MT of fresh bunkers put on board was carried out.

Fortunately, the off-spec bunkers caused no damage to the vessel’s engine, auxiliary engines or purifiers. However, the total distance deviated from the voyage was 1,074 nautical miles, involving four days, five hours and 18 minutes. Charterers claimed from sub-charterers the cost of the calls at Port Louis and Cape Town, the cost of removing and replacing the off-spec bunkers, the cost of repairs to the purifiers, the time lost, costs of the surveyors and fuel experts as well as legal costs, which amounted to a total of USD 182,000. Legal proceedings were commenced but immediately prior to the hearing the case was settled by sub-charterers for USD 150,000 plus recoverable costs of GBP 35,000.

Lessons learned

Shipowners – and charterers, if they supply bunkers to a vessel – should always:

– Be selective when choosing a supplier. Order fuel to desired ISO grade and describe it in the charterparty as well as in the requisition to supplier.
– Take representative samples at the time of delivery and agree with the suppliers that the samples are representative. Ensure that the samples taken are properly labelled.
– If the supplier takes other samples at the time of the delivery, try to establish how and when they were obtained. Protest if not invited to witness the taking of these samples.
– Use a fast, reliable testing service to analyse representative samples.

Owners should also:

– Segregate new fuel from that held on board.
– Never use new fuel until the analysis results have been examined and it has been established that it is suitable.
– Maintain careful reliable daily records of the contents and consumption from each fuel tank.
– Ensure good maintenance and calibration records are kept for all machinery.
– Ensure engine log books properly record all temperatures, pressures and remarks of engine performance on a daily basis.

If off-spec bunkers have been delivered and are unsuitable for use they should be off-loaded and replaced by new on-spec bunkers. If inferior bunkers have to be used or have been taken in use the following should be done:

– The vessel should notify the shipowner immediately if they are experiencing problems with an off-spec fuel. If the shipowner purchased the fuel directly from the supplier, he should notify the bunker supplier and send a copy of the test results.
– The shipowner should contact an expert and make use of reliable fuel testing services such as DNV Petroleum Services (DNVPS) or Lloyds Register (FOBAS) to obtain advice on how to proceed to solve the particular problem to avoid damage and mitigate losses.
– The shipowner should contact the engine manufacturer as well as fuel supplier for advice. Action will depend on which parameter is off-specification and/or what the particular problem is. The degree of quality deviation from the specification must be considered.
– The shipowner should notify the charterer (if the charterer purchased the fuel) and other interested parties.
– The parties should inform their insurers.

Conclusion

These two cases illustrate the importance for shipowners and charterers of having in place a good system for testing bunker quality with a reputed organisation, as well as having protective contractual clauses in charterparties.
Controlling bunker costs
By Ivar Tønnensen, Gearbulk (UK) Ltd, London; Member of the Executive Committee of the International Bunker Industry Association, Ltd.

Introduction
Is it possible to make money on bunkers? Yes, and not just by selling them. Owners generally cannot control their earnings, and are at the mercy of the market when it comes to freight and time charter rates. But they can control costs, and every cent saved on a direct cost like fuel is welcome. So you can make money on bunkers, by cutting costs.

Bunker prices are just as much market-driven as freight rates, but the market price of bunkers is far from the only cost involved. Too many owners fail to realise that and give too little attention to bunker purchasing and management. This article shows how attention to bunkers can generate real cost savings, and a real boost to bottom line results.

Bunkers have always been an important part of ship operations and, as such, bunkering is a vital part of an owner’s day to day operation. Fuel costs have become a major part of the running costs of a vessel – in some instances as high as 60 per cent. This weighs heavily on the profit margin and may lead to financial loss through lack of knowledge, skill or care on the part of the buyer and/or the crew. Depending on the development of the bunker market, one can safely say that the bunker department is both loved and hated. But all too often companies have no actual bunker department, or there is a difference of opinion within the organisation as to what the bunker department should actually be doing.

The chartering department usually looks upon bunkering a vessel as synonymous with a car pulling up to the local petrol station, and they usually need the fuel in a rush. The management looks at the department as the biggest spender in the organisation and is always asking: “couldn’t you get the fuel cheaper somewhere else?” The technical and operational departments treat it as a necessary evil and are constantly complaining about the quality of the fuel, and that it is always delivered outside office hours. But either way, bunkers must be bought and therefore it is of vital importance for an owner that the persons involved with fuel purchasing have the necessary knowledge on how, where, and when to procure the fuel in an efficient and economical way.

Liner operators, who see their fuel costs clearly, have implemented sophisticated purchase and management strategies for bunkers. Tanker owners all too often leave it to the market. It is suggested that educated buyers who follow proper purchase routines with proper follow up, who know the market, and know whom they are buying from, will have a significant positive effect on the bottom line.

If two shipowners are buying fuel in the same market for a similar route, why can one get a better result than the other? Because one employs staff that pay attention to where the money goes, and the other simply looks at the market price. Anyone with a trading instinct can play a market. Bunker management requires more knowledge than that.

Your money can go up in smoke without pushing the ship one metre forward. You may lose on the volume/weight conversion, or more simply, you may pay for more than you get because your crew does not supervise and ensure the quantity is lifted correctly. You may lose money because the energy content of your cheap fuel is much less than the
Purchasing

The purchasing aspect of the business can be broken down into three parts, namely: 1) activities leading up to the purchase, 2) the purchase itself and 3) the control functions that must be performed once the purchase has been concluded and the fuel delivered.

Pre-purchase

When a vessel is in need of fuel replenishment, it triggers a series of events. It starts with the operator approaching the bunker department with a request for bunkers. Together, they look at the schedule of the intended voyage and the various criteria indicating how much, where and when the bunker is to be bought. Some of these criteria can typically be:

– Intended cargo (freight v. bunker).
– Ensuing voyage.
– Low priced market v. high priced market.
– Alternative bunker ports.
– Time factor (deviation, time to bunker).
– Timing of purchase.

Intended cargo: The freight rate must be considered against the price difference of the fuel between the load port and discharge port. If the price of fuel at the load port is lower than at the discharge port and the difference in price is greater than the freight rate, it is more economical to take fuel than cargo.

Ensuing voyage: One must also take into consideration what are the intentions for the following voyage. As indicated in the introduction, bunkering a vessel is not like driving a car into the local petrol station. Your vessel may end up in a port where the fuel is very expensive, or in the worst case, there is no fuel available.

Low priced market v. high priced market: It is also important for the purchaser to have a good knowledge of the bunker market. Every vessel has a certain steaming range, based upon the capacity of her bunker tanks. Thus, if the vessel is in a low cost area and going to a high cost area, it makes sense to bunker as much as possible, provided draft, cargo intake, etc., permit, thereby ensuring that one buys as little as possible in the high cost port if the vessel is returning to an area of lower prices.

Alternative bunker ports and time factor: The discharge port (inbound voyage) must be considered against the load port (outbound voyage), provided they are in the same geographical area and price range. One must also compare the economics of bunkering while working cargo against bunkering en route in a typical bunker port. The rule of thumb is that one can calculate at least 12 hours’ loss of time for a 1,000 MT stem. Time has a value, which together with port cost adds up to a cost per tonne of fuel to be bunkered. Needless to say, the smaller the stem, the larger the difference, since both time value and port cost are constant. In addition, there is the weather factor. Conditions may be such that it is impossible to bring a barge alongside, thus additional time is lost. Hence, when comparing bunker prices at a discharge port or a load port with prices at a potential bunker port en route, it may be advantageous to bunker while working cargo in port, even if the price is higher than at the potential bunker port en route.

Timing of purchase: “Should I buy today, or wait till tomorrow?” Many oil companies only give quotes valid for a maximum of seven days. However, if you can narrow the time for lifting the bunker to one or two days, firm quotes may be obtained sometimes up to two weeks in advance. The drawback, unfortunately, is that the price may fall again. Just be aware that entering the market too close to the lifting date may pose problems, after all, the barge must be loaded, the supplier must prepare documentation, etc. The suppliers may even be sold out, or committed to other vessels, forcing you to let the vessel wait. Fifty cents on the dollar saved going into the deal may easily cost you much more at the end of the deal. This should also be kept in mind when choosing a supplier.

Purchase

Once a decision on where and how much to purchase has been made, one may proceed with the order. This can be done in several ways: directly with the supplier, via one or more brokers, or via the Internet. Irrespectively, it is important to indicate clearly the type of fuel needed, referring to the relevant ISO Standard (e.g., 380 CST, ISO 8217/1996/RMG35). ISO 8217 is an efficient specification that calls for a minimum of tests and expenses required to control a desired property, and for tests which are as independent of each other as possible. Since this specification normally protects the buyer, and accidental problems should be kept to a minimum.

Having in mind the debate over the past few years on the issue of waste lube oil in the fuel, it may be prudent to add the following wording when specifying which fuel is required: “The Seller warrants that the bunkers delivered under this contract do not contain chemical waste, waste lubricating oil of any kind or other substances detrimental to the vessel, her engine(s) and/or her crew.”

However, “when” to purchase is often the big dilemma for the spot buyer. Timing may result in big savings, depending on volume. There are no set rules for “when” - it is normally a combination of “gut feeling”, market information and luck. However, do not think for a minute that you will be able to strike when the prices are at the bottom. Usually, when one thinks prices are at their lowest they are actually on the way up again, so the best time should be when they are on the way down, just before the market bottoms out.

If you use brokers it is recommended to use a minimum of two. This makes it more likely that the market will be covered properly and, most important, gives you the necessary leverage to obtain the best price possible. However, you should ensure that each broker covers different suppliers, as otherwise the market becomes confused. The Internet is as yet only a limited option, but you can use it to check what brokers are saying.

Once in the marketplace, consider which possible suppliers you will or can use. Have you used them before, are they newcomers to the market, are they traders or actual suppliers? What is their reputation, how do they handle claims? If you do not know all the answers, ask the brokers. Remember that the supplier has the same attitude towards you, hence asking questions is a vital part of the trade.

Another method to differentiate between sellers is to look at the energy content of their fuel. When converting their offered price into cost per kg an interesting picture emerges. Let us assume supplier A offers USD 150/MT and supplier B offers USD 147.50/MT. You know from past history that A’s oil has an energy content of around
41.2 mj/kg and that B’s level is around 39.9 mj/kg. From the outset, one would assume seller B is the cheaper alternative. However, seller A is actually the best buy, as seller B would have to lower his price to USD 145.27 in order to match A (USD150).
41.2 x 39.9).

When you have decided which supplier(s) you would like to deal with, you must negotiate the price and conditions under which the fuel is to be delivered. With respect to the latter, you may discover that many suppliers refuse to negotiate their terms of sale, but one should always try. Quite often one will find that a supplier is more willing to negotiate an addendum to the terms of sale than to actually alter the printed text. Some call this process “Dutch auction”. Be that as it may, the buyer’s function in the company is to obtain the best quality fuel for the most reasonable price delivered at the time one has requested and agreed.

Most large buyers of fuel do part of their purchases on a spot basis, while other portions of their overall requirements are met by short and/or long term contract(s) with one or more suppliers. The contract can cover a specific grade or port or an area, depending on the overall trading pattern of the owner’s fleet. Since monetary savings are the exception rather than the rule with regards to contracts, there are basically two major reasons for entering into contracts: 1) quality and 2) availability. We all like to buy top quality fuel every time, as this reflects on the overall trading pattern of the owner’s fleet. Hence, one would tend to enter into contracts in ports with questionable quality and go spot in ports where good quality fuel is always available. Likewise, with regard to availability, one tends to contract in ports which are strategically located where one must have fuel in order to perform the voyage.

This applies especially to the liner trades. The benefit of contracts is that one always deals with the same supplier, the parties know each other’s requirements, quality and quantity, and can therefore plan their maintenance costs with more certainty. However, there is always the risk of solving them. But you do not get something for nothing, so you may experience that prices may not be as advantageous as if you went into the spot market. Normally pricing is based on Platt’s Bunkerwire and it may be Platt’s average for the port or area. Some suppliers use monthly averages, some use weekly or even the issue published closest to lifting day. Contracts are also known to have been entered on the basis of Platt’s Marketscan, which is a commodity-oriented publication and as such not widely known among buyers. Either way, the question really becomes: “how much are we willing to sacrifice on the price for the benefit of quality and service?” Only you can answer this question, but if your answer is “nothing” then you are certainly going to lose money on bunkers.

Post-purchase
You have now placed a stem with a supplier and the fuel has been delivered as requested. Then comes the task of checking whether the vessel has received what was ordered and paid for. This will be discussed in more detail a little later on, but the importance of properly instructing the crew on what to do prior to, during and after bunkering, especially with respect to the sampling, should be stressed. The sample is the sole evidence of the quality of the fuel delivered and becomes the focus in a quality dispute. The standard questions to the chief engineer are: “how, where and when were the samples taken, and did you witness the process?” In virtually all terms of sale it is the sample retained by the barge that is to be re-tested, so the importance of properly witnessing the sampling is evident.

There are only two items the crew can correctly verify: the volume and temperature of the fuel, and both are important as they, together with the density, are the basis to determine the weight which the invoice is based upon. Since you can not witness all bunkering yourself, the crew becomes your ears and eyes on the spot, and their report, together with the delivery receipt, is of importance for the final control of the invoice.

The sample should always be tested at an independent laboratory. There are obvious reasons why. Firstly, to know if the quality is according to specifications ordered and secondly, to find out if the weight is correct. Based on experience it can be said that the tested density is seldom equal to the density declared on the delivery receipt. Large variation means that you are paying for fuel that you have not received, or have received more fuel than what is stated. This can be illustrated as follows:

One can easily imagine what this may amount to over the years, if the fleet is sizeable and it happens a few times per vessel. However, it can also happen the other way around, in which case one must add the extra weight when controlling the invoice. Normally, when you are faced with large differences in density, a re-test of the retained sample is called for and the result of this test is final and binding for both parties. Again, it is important to properly verify that the sample is true and representative, because in the end it can mean money.

Another item to look out for is correct temperature conversion, which can be illustrated as set out in the left table to the right.

<table>
<thead>
<tr>
<th>Temperature Conversion</th>
<th>Density Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.2 x 39.9</td>
<td>39.9 x 41.2</td>
</tr>
<tr>
<td>41.2</td>
<td>39.9</td>
</tr>
<tr>
<td>39.9</td>
<td>41.2</td>
</tr>
</tbody>
</table>

There are tables explaining which factor to use when adjusting for temperature and it is strongly recommended that they be used. As a general rule, it is recommended not to pay an invoice which is not accompanied by a copy of the bunker receipt, or at least hold off on the payment until the receipt is received – otherwise the invoice can not be controlled properly. A word of caution, though: always pay the undisputed amount.

Hedging
Hedging has been used in the bunker industry for many years, but only recently has hedging reached the popularity it presently enjoys. While it was basically the oil companies that offered owners hedging instruments in the past, today banks, trading houses and others have jumped on the bandwagon. They offer hedging in commodities such as crude oil, heating oil, jet fuel, gas oil, etc., but as an owner, one should concentrate the hedging in fuel oil. In general, the main rule should be that one hedges in the product that the vessel burns.

Here are a few thoughts (from an owner’s point of view) on why and how to hedge.

When looking at the futures market, it is important to distinguish between the paper and the physical market. In this connection, the physical market means that one buys a pre-determined amount...
of fuel at a set price for delivery at a specified period. The paper market, however, differs from the physical in that one settles one’s positions in cash, either way, and no physical oil is involved. You should always keep the objectives in mind when you enter the paper market: speculation or insurance?

In general terms, one should look upon hedging as insurance. This means best possible coverage at minimal cost and risk.

What do we hedge? Primarily the bunker prices in the annual budget, but it can also be the bunker prices in a freight contract or even the bunker consumption for a vessel taken on time charter.

If a cargo contract already has a bunker clause built into it, that in itself is a hedge. However, one should note that a bunker clause in a freight contract might be converted into a hedge. If a bunker clause is an asset for an owner, it is a liability for the charterer, for which he may be prepared to pay additional freight to get out of. The owner can use the extra few cents to the freight to buy an option. This can be illustrated as in the above table.

When the decision has been made to hedge, the next question is what instrument to use. There are different instruments available, such as swaps, caps, participation, etc., but common to them all is the element of risk, and do not forget, you still have to pay market price for the fuel.

The two most commonly used instruments are swaps and options. Swaps are possibly the most used way of hedging. The main principle is that one agrees on a strike price with a set volume over a certain period. In other words, buy in the future at a price set today. The benefits of this instrument are that one can buy at a set price for delivery at a specified period. The paper market, however, differs from the physical in that one settles one’s positions in cash, either way, and no physical oil is involved. You should always keep the objectives in mind when you enter the paper market: speculation or insurance?

In general terms, one should look upon hedging as insurance. This means best possible coverage at minimal cost and risk.

What do we hedge? Primarily the bunker prices in the annual budget, but it can also be the bunker prices in a freight contract or even the bunker consumption for a vessel taken on time charter.

If a cargo contract already has a bunker clause built into it, that in itself is a hedge. However, one should note that a bunker clause in a freight contract might be converted into a hedge. If a bunker clause is an asset for an owner, it is a liability for the charterer, for which he may be prepared to pay additional freight to get out of. The owner can use the extra few cents to the freight to buy an option. This can be illustrated as in the above table.

When the decision has been made to hedge, the next question is what instrument to use. There are different instruments available, such as swaps, caps, participation, etc., but common to them all is the element of risk, and do not forget, you still have to pay market price for the fuel.

The two most commonly used instruments are swaps and options. Swaps are possibly the most used way of hedging. The main principle is that one agrees on a strike price with a set volume over a certain period. In other words, buy in the future at a price set today. The benefits of this instrument are that one can buy at a set price for delivery at a specified period. The paper market, however, differs from the physical in that one settles one’s positions in cash, either way, and no physical oil is involved. You should always keep the objectives in mind when you enter the paper market: speculation or insurance?

The supplier claims he has delivered 1,500 MT based upon a density of 0.990. However, the test shows that the actual density is 0.978. The formula to calculate the actual quantity is quite simple: Using the above formula, the calculation becomes:

\[
\text{Invoiced weight} \times \frac{\text{tested density}}{\text{Declared density}} = \text{actual weight}
\]

\[
1,500 \text{ MT} \times \frac{0.978}{0.990} = 1,481.82 \text{ MT}
\]

If the price was USD 150/MT, there has been an over-payment of USD 2,727.

\[1\] See also articles “Some technical aspects of marine fuels testing” and “Effects of off-spec bunkers” elsewhere in this issue of Gard News.
their safety. Secondly, because a small accident while bunkering will often lead to a small oil spill right under the noses of the authorities, which will become a considerable and very expensive problem. So your first priority must be to ensure that the crew follows correct routines to prevent safety problems or pollution. These are well documented, and should be in your ISM system, but it is easy to cut corners at night or in less regulated ports. Do not allow it to happen.

Whatever you do, sooner or later you will be faced with a claim. Types of claims will vary, but there are two major: quantity and quality. Of these two, quantity may be rated as problem number one, followed by quality.

As discussed earlier, the quantity (weight) is based upon volume and density at a set temperature.

A classic scenario is that the barge claims it has delivered a certain volume, the vessel claims it has only received so much and we have a dispute on our hands. How do we solve this? Firstly, let us take a look at a common clause used in terms of sale:

“Quantity shall be determined at Seller’s or Seller’s supplier’s option from the gauge or meter of shore or barge tanks. The Seller's determination of quantity shall be final and conclusive, but the Buyer shall have the right to be present or represented at the measuring. Any challenge by the Buyer of the said measurement shall only be admissible if made to the Seller’s representative and noted on the delivery receipt at the time of delivery and confirmed in writing by the Seller within 14 days of delivery.”

Faced with such a clause or similarly worded clauses, a buyer must exercise its right to be present or represented at the measuring. Fortunately, measurement at storage tanks ashore is about to be a thing of the past, but measurement at barges is very much a reality. One can always have a surveyor present, but many owners look at the cost issue and leave it to the crew to perform this task. Things to watch out for are:

– Correctness of calibration tables.
– Ensure that actual measurement is carried out by the crew, and that they report it to the head office.
– Note the temperature and make sure it matches what is on the delivery receipt.

(A x B):(C x D) = E

A: Total cargo to be carried. 500,000 MT
B: Freight increase per ton. USD 0.05
C: Bunker consumed per voyage. 1000 MT
D: Number of voyages for the contract. 10
E: Option premium per MT. USD 2.50

The crew should always make proper remarks on the delivery receipt, as the supplier will use it later against you as evidence. Preventive measures are the best way to fight and/or eliminate quantity disputes.

Unfortunately, quality disputes are unavoidable and measures are similar to those applicable to quantity disputes. Preventive medicine is the most important feature. What is then the prescription?

– Be selective in choosing a supplier.
– Always test the fuel.
– Do not use the new fuel before the test result is available.
– Avoid mixing new fuel with old fuel in the same tank(s).
– Ensure that the samples taken are as representative as possible and that they are properly labelled. They are the sole evidence of the fuel the vessel has received.

But even after having done all of the above, you may still be faced with a
dispute. The nature of the dispute, more often than not, dictates which actions you must take. It is always preferable to try to solve a dispute outside the courtroom, and experience shows that most suppliers share the same point of view. It then comes down to your negotiating skills. However, should the dispute be of such a nature that the courtroom is unavoidable, make sure that all communication between you and the other parties involved is in writing. In this day and age too much is done via the telephone and when you are in the heat of the battle, maybe a year later, it is hard to remember who said what to whom. It only takes a few minutes to summarise the contents of a telephone call in writing and send a copy of your notes to the person you spoke with. Get into the habit of doing it. Hearsay, or “I think I said...” unfortunately does not help your case. Keep in mind that in the end what is written down will be your strongest evidence.

Conclusion

Certainly there are those of you who feel that important points have been left out of this article. They probably have, but it is hoped that the few issues raised may point you in the right direction. A good piece of advice, though: make sure the person who buys your fuel learns from past mistakes. Look at old claims and analyse them for the purpose of determining what went wrong and what must be done to ensure it does not happen again. The result may be frightening, but it sets in motion a process with the ultimate goal of overall improvement of routines, both in the office and on board.

Where to go for help

To some owners, the contents of this article will be familiar stuff. But to many, the idea of a sophisticated approach to bunkers will be novel. Where do you go for help? The first port of call should be IBIA, the International Bunker Industry Association. This is not a trade body for suppliers, or for buyers. It is a forum for everyone dealing with bunkers. IBIA offers free training courses all over the world to bunker buyers, it publishes numerous guides to good practice and its officers can help with both simple and technical bunker questions. There is a reservoir of expertise to tap into, both to help avoid problems and to resolve any that arise. A call to IBIA will add to your bottom line because by knowing more about bunkers they will cost you less. Money saved is money earned.

Liquid gold - Fuel oil and lubricating oil

By Lindsay Gordon, Gordon, Giles & Company Ltd, London

INTRODUCTION

Poor quality fuel oil or lubricating oil in an engine can result in damage or breakdown. In relation to the high cost of these essential products, testing and careful handling on board requires little effort and minimal cost. This article considers these aspects.

FUEL OIL

The advice below applies to fuel oil and diesel oil.

BUNKERING

There are a few “golden rules” to be observed when bunkering fuel oil. These are as follows:

Rule No. 1
Always order fuel according to the engine maker’s recommendation, using the industry fuel oil standard ISO 8217. This requirement should be included in the charterparty. For each fuel category within ISO 8217 the characteristics are given as maximum values with the exception of flash point and for this reason it is not sufficient to only refer to ISO 8217.

Rule No. 2
Check the supplier’s paperwork to ensure that the delivery conforms in terms of quantity and specification with what has actually been ordered.

Rule No. 3
Whenever possible, place new bunkers into empty tanks. New fuel oil should not be used until analysis results have been received.

Rule No. 4
Employ the services of an independent fuel analysis contractor, e.g., Lloyd’s Register, FOBAS (Fuel Oil Bunker Analysis & Advisory Service), Det Norske Veritas – Veritas Petroleum Services. The cost is a few hundred dollars and test results are usually available within 36 hours.

Rule No. 5
The Chief Engineer should check that the bunkers to be loaded do not contain an unacceptable amount of water. In the case of distillates, a simple test involving a dip tape and water finding paste can be used. For fuel oil this may not always be accurate and a water test kit can be used. The kit is cheap and simple to use.

HANDLING FUEL OIL

Heavy fuel (residuals and mixtures of residuals and distillate) must be purified in an efficient centrifuge before entering the service tank. There are several key points.

(1) Ensure that the correct gravity disc is used.

(2) Never exceed the flow rate recommended for the centrifuge for the grade of fuel in use. The lower the flow rate the better the efficiency. Consider using two or three centrifuges in series/parallel as purifier/clarifier.

(3) Centrifugging is still recommended for the distillate fuels, MDO/MGO, as the fuel may be contaminated in the storage tanks.

(4) Keep the fuel temperature about 10°C above the minimum storage temperature, to minimise the risk of wax formation and the temperature after the final heater 5°C to 10°C above the recommended fuel injection temperature to compensate for heat losses between heater and fuel injector.

(5) The temperature at the purifier should be steady – a typical optimum temperature is 98°C. Note: Temperatures at storage, settling and service tanks should be monitored at least twice daily. Overheating can degrade the fuel and result in cargo damage in holds.

(6) The importance of operating the settling and service drain test cocks is often overlooked, particularly in unattended engine rooms. Twice a day is the minimum for this simple operation, which will reduce the risk of water or sludge entering the fuel system.

(7) Fuel oil filters should be examined, say, every few days in service – even if the differential pressure gauges are normal. The reason for this is twofold. First, a filter will often allow fuel to pass even when partially choked. It can then suddenly choke completely. Second, although Class Rules require a standby filter to be available, difficulties have been encountered in changing over to the standby filter in an emergency situation, resulting in engine stoppage.
(8) An automatic viscosity controller (viscometer) should be in proper working order to maintain correct viscosity of the fuel at the engine. Failure to do this can result in poor combustion and even damage.

Note (1): Remember, viscosity in itself is not a measure of the quality of a fuel.

Note (2): Fuel oils having a high density in combination with low viscosity have low ignition quality. This can mean poor combustion and “diesel knock”.

Ignition quality can be calculated in terms of calculated carbon aromaticity index (CCAI). Typically, while not an exact tool for judging ignition quality, engines running at constant speed and load (over 50 per cent) can without difficulty use fuels with CCAI 870 (maximum). Engines running at variable speed and load can without difficulty use fuels with CCAI 860 (maximum).

WHAT CAN BE DONE

(1) If an independent analysis recommends that a fuel should not be burnt, do not do it! Place the supplier on notice, seek advice from your P&I Club and consider a port of refuge.

(2) Excess water can be settled out with time and heat. Purify slowly. Check to see if contamination is saline – do not use the fuel if it is.

(3) If a fuel has a poor compatibility rating, do not mix with any other fuel.

(4) If “diesel knock” (high CCAI) occurs, ensure that engine and fuel temperatures are maintained. Do not advance ignition timing.

(5) If problems occur, samples should be taken at various points in the fuel system, e.g., transfer pump, setting and service tanks, before/after purifier. It is also useful to take sludge or deposit samples at the purifier, filter, scavange spaces and piston rings/crowns.

LUBRICATING OIL

Many of the points discussed above regarding purifiers, filters, test cocks on storage tanks apply to lubricating oil. In addition, there are several key points to consider.

(1) Ensure that the correct grade of oil is being used.

(2) Lubricating oil is not technically clean when supplied and, inevitably, becomes dirty and often contaminated in service. It should be purified constantly at sea. Water must not be added when centrifuging.

(3) The oil should be heated to about 90°C at the centrifuge. Check with supplier.

(4) Try and use only about 20 per cent of the rated flow capacity of the separator.

(5) Check that the correct gravity disc is in use at the purifier.

(6) Take samples for analysis about every 1,000 operating hours, to ensure safe engine operation. The sample (minimum 1 litre) should be taken with the engine in operation, after the oil filter on the engine. Provide the following details with the sample – name of vessel, date, installation, engine number, oil brand, engine operating hours, hours oil has been in use, where taken, type of fuel oil, other remarks.

(7) If the water content of an oil charge exceeds 0.5 per cent to 1 per cent, and cannot be removed by purification in service, change the complete charge and renovate. If problems are experienced, tell the analyst as various types of analysis are available.

(8) In general, changes in the analyses provide a better idea of the condition and trends in the oil than the absolute values.

(9) Send or ask the oil supplier to send copies of the analyses to the engine maker for comment.

If the lube oil in an engine is suspect, pump contents up to an empty storage tank. Allow to settle – drain – take sample for analysis. Meanwhile, clean out sump tank, filters, etc., renew charge.

SHORT STORY

One of the world’s largest marine diesel engines burnt untested fuel containing “cat fines” (catalytic aluminium/silicon fines). In a few hours of operation, several years wear and tear occurred in the new engine. An independent few hundred dollar test would have avoided this expensive claim.

SUMMARY

Based on experience it can be said that excessive wear and tear, damage and salvage of vessels with broken down engines often relate back to basic problems with fuel oil and lube oil quality.

What is so amazing is that having fuel oil independently analysed costs a few hundred dollars. Suppliers often analyse lube oil free of charge. The amazement is that many owners still, on the threshold of the year 2000, do not do this!
Introduction
The securing of bunkers of an acceptable quality depends on a variety of factors such as availability, demand, area, choice of suppliers etc. The problems have, to a certain degree, fluctuated with the bunker prices. The market has seen fuels contaminated with waste chemicals detrimental to the health of the crew as well as damaging to the ships engines. For many years, it has been normal in certain areas of the world to dispose of used automotive lubricants in bunkers, thus possibly adding to engine operating problems.

High-density fuels which far exceed the capabilities of the onboard fuel treatment plants are being delivered to vessels. Water in the fuels is not uncommon, resulting in emulsified fuels and fuels that cannot be treated in shipboard fuel treatment plants. Some of the problems mentioned result in damages that are insured against, but in most cases the associated costs fall below the deductible. Occasionally, blending contaminated fuel with good quality fuel may solve the problem. In other instances, the damages in the form of wear and tear of moving parts are so great that the vessel has to divert to an emergency port for major repairs.

Primary problems
We see mainly three problems:
1. Catfines, aluminium and silicon resulting from the refinery cracking processes, are very abrasive to ship’s machinery, unless properly removed. The end result can be machinery damage unless the Catfines are removed to an acceptable level (contact your engine manufacturer) through effective fuel treatment onboard, i.e. optimum use of the centrifuges. The mode of centrifuge operation must be discussed with the manufacturer as the type and year of manufacture of the separators is of significance.

2. As the global demand for premium products such as gasoline, jet fuel, heating oils and gas oils has increased sharply, the use of refinery conversion processing have markedly influenced the quality of the end product, the residual component which is the major component used for blending Intermediate Fuel Oil (IFO) for ships. The result is fuels with higher density, carbon residue, sulphur etc. Practically every parameter has increased significantly throughout the refinery processing. Ships fitted with older centrifuges are unable to effectively treat such fuels, particularly the “high density” products, i.e. fuel densities of 990 Kg/m² and above. Centrifuge manufacturers offered upgrade kits for the “old” separators, but few operators invested in these kits.

3. Poor ignition quality is another problem that has arisen recently. The standard laboratory tests do not test the ignition quality, and it is not a part of the ISO 8217 Fuel Standards. The problem is normally associated with low viscosity/high density fuels. If a vessel receives this type of fuel, the ship should keep temperatures as high as possible, thus avoiding low load operation. Gard has seen a number of claims in the last few years where the vessel has had to be assisted to an emergency port. The use of inferior ignition quality fuels may well result in major repairs to the vessel’s engine(s).

Recommendations
Owners should be aware that the increased demand from shore side industries for premium products has resulted in a deterioration of IFO used in marine engines. Compounding the problem is the demand from shipowners for high performance lighter engines.

IFO used as bunkers should, as a minimum, meet the requirements of the specifications set out in ISO 8217, latest issue. Bunker testing agencies such as DnV Petroleum Services (DnVPS) and Lloyd’s Register’s FOBAS are set up to monitor that this is the case.

If the vessel has performance difficulties and poor ignition quality is suspected despite a satisfactory CCAI value, a further test for the ignition quality should be performed. Fueltech, FOBAS and DnVPS can perform these services (see Gard Loss Prevention Circular 04-01, Charterers Liabilities and Bunkers).

If the vessel is in the unfortunate situation of having received a high Catfines fuel, and to use the fuel, owners should be prepared for a succession of replacements of plungers, nozzles and other moveable engine parts. A normal full set of spares may not be sufficient to see the problem through. The fuel testing service provider should also be contacted, together with your centrifuge manufacturer and fuel supplier for advice and decision-making. Separators must be in prime conditions. Considerations should be given to replacing separators manufactured prior to 1984/1985.

If the vessel has been on extended lay-up, Catfines and other impurities may settle in the bunker tanks if a sufficient amount of bunkers remain onboard during the lay-up period. When subsequently re-commissioned, these Catfines and impurities are likely to be stirred up in heavy seas and cause damage to the engine(s). Therefore, consideration should be given to the cleaning of bunker tanks prior to bringing a vessel out of an extended lay-up to prevent the occurrence of this type of problem.

The settling of Catfines is a continuous process taking place onboard every seagoing vessel. As a rule, fuel tanks should be cleaned regularly. Settling and daily service tanks should be cleaned at least once a year. This messy, but important task would save ship operators a lot of problems.

For further information on bunker quality, testing and other relevant information, can be found on websites such as www.bunkersworld.com, www.dnvps.com, and www.lrfobas.com and www.fueltech.no.

Gard would like to thank and acknowledge Mr. Kjell Haugland’s assistance in preparing this circular.
Some technical aspects of marine fuels testing
By Kjell Haugland, Marine Fuels Consultant, Oslo

Introduction
Ships use the cheapest liquid fuels available on the market, hence the fuel quality varies greatly. The safe operation of ships depends on knowledge of the quality of the fuel used.

Fuel Testing
It is estimated that only one third of all marine fuels delivered to ships trading internationally is tested. Even so, the experience from the testing services indicates that things are far from perfect. The comparison of a car filling up with fuel at a petrol station with a ship lifting bunkers via a barge does not apply. And for good reasons, which will be explained later.

Marine fuels are practically all custom blended to a buyer or ISO specification. The supplier may or may not have detailed information on the quality of the components he is using in the blend. Satisfactory quality components in themselves may well result in an unsatisfactory blend, unless you know exactly what you are doing, and we all know that blends are made directly to the vessel bunker, either through line blending from shore installations, blending on board barge, or in-line blending from the bunker barge. The only way to ascertain the quality of the product actually received on board is through representative sampling and testing by specialised laboratories.

It is true that any analysis result is only as good as the sample analysed. If the sample is not representative of the average quality of the product transferred from supplier to buyer, then the analysis result is of little or no value. Therefore, there should be rules and routines on board to ensure that every bunkering is properly sampled, including fuels for the auxiliary engines. Each and every vessel should have fixed routines describing in detail the bunkering operation, including the stages before, during and after bunkering, and listing the responsibilities of each individual involved. It is the owner/operator's responsibility to set up such an instruction manual. It is also his responsibility to provide the ships with suitable samplers. Prior to placing the order, it is his responsibility to agree on a joint sampling procedure with the supplier, including where and when the sampling shall be carried out. If the vessel does not have a fuel sampler acceptable to the supplier, the buyer is not likely to be in a position to stipulate sampling at the point of custody transfer, i.e., at the ship's fuel manifold.

Proper sampling during a bunker transfer operation is extremely important, because continuous drip sampling at the point of custody transfer is the only secure way to ascertain the quality of the product received by the buyer. Sampling either before or after the event will not, for obvious reasons, bear the same weight. It is good news that Singapore, being by far the largest bunker port in the world, has decided to introduce legislation requiring all bunkering taking place by barge to be sampled continuously during the bunkering operation at the receiving vessel's manifold. The bunker barges will all be required to fit a defined quality sampler at the receiving vessel's end of the bunker delivery hose. The new law will become effective on 1st January 2002.

The Marine Environment Pollution Committee (MEPC) of the IMO (International Maritime Organization) has also recently drafted guidelines indicating where and how samples should be taken in connection with the bunkering of ships. The “Guidelines for the sampling of fuel oil for determination of compliance with ANNEX VI of Marpol 73/78” state: “For the purpose of these Guidelines a sample of the fuel delivered to ship should be obtained at the receiving ship's bunker manifold and should be drawn continuously throughout the bunker delivery period”. It is hoped that these guidelines will be adopted by all the major shipping nations, because they make good sense.

Even if the bunker industry has come a long way in its endeavour to safeguard the interests of the various parties involved, there are still strong objections from some supplier quarters to accept joint sampling by buyer and seller, despite the obvious fact that this is only fair and square. The practice of multiple sampling by both parties makes dispute resolution difficult, and is always costly and time-consuming to all involved. The sophisticated buyer, who sees the benefit of fuel quality control, should always insist on joint sampling at the point of custody transfer. If declined by the supplier, then he should make a reference to this in the ship's logbook.

Testing services provide their customers with sound and practical advice relating to bunkering operations. Following them is good practice.

It is customary in some ports to request the pre-signing of documents relating to the bunkers being transferred, including the signing of labels for the bunkering samples. This is not acceptable, as the buyer has no control over which sample bottles the labels will be placed on.

Sample transport
The operator pays good money to the testing service for speedy analysis results. The chief engineer must therefore arrange for a courier company to pick up the sample immediately after collection. It is advisable to inform the courier company of the sample's whereabouts by e-mail or fax, with copy to the agent and owner/operator.

This will put pressure on the ship's agent and courier, and will enable the operator to follow up in order to avoid delays.

Use of new fuel
The ship should avoid using the new fuel until its quality has been confirmed to be satisfactory by the laboratory report. It has been customary to bunker just prior to leaving port. However, analysis results on the new bunkers may not be available until a few days after leaving port, so some operators have started to bunker when entering port, whenever possible (draft, cargo, timing, etc., permitting). This allows the analysis results of the new fuel to be available prior to leaving port, which of course is the ideal situation. Should the fuel be...
While at sea, a ship having received the report indicating a satisfactory fuel quality can optimise the fuel treatment, knowing the precise values of important fuel parameters, such as density (selection of the correct gravity disc for the purifier), the viscosity (adjustment of temperature), water content (checking of water content in the fuel after treatment in order to decide on the use of an emulsion breaker additive) and so on.

However, if the analysis report indicates an unsatisfactory fuel, the fuel testing service will also provide recommendations on how to optimise its treatment and use, if necessary. Through communication with all parties involved, including supplier, testing service, perhaps also class and/or insurer, sound decisions can be made based on facts. The problem may be related to the separation of a high-density fuel. The advice could then be to modify the purifier into a clarifier, by installing the smallest gravity disc of the set, thus converting the separator into a clarifier, frequent shooting of the clarifier bowl, possibly operating two clarifiers in parallel, depending on other fuel parameters such as water, sediments or catalytic fines (al+si). Provided you know exactly the quality of the fuel received on board, the operator will be in a position to make the right decision.

Now imagine a vessel also having received inferior quality bunkers, but without any sample sent for testing. She will carry on until engine damage of some sort occurs, resulting in delay and extra cost, usually far exceeding the cost of regularly using a testing service.

Marine Fuels Specifications

The operator who realises that the quality of marine fuels varies considerably, being “the bottom of the barrel”, the “leftovers” at the refineries, a “low priority product” in the eyes of the manufacturer, accepts that fuel quality control is required for safe ship operation. He realises that even though “highly priced”, marine fuel is priced considerably, being “the bottom of the barrel”, the “leftovers” at the refineries, a “low priority product” in the eyes of the manufacturer, accepts that fuel quality control is required for safe ship operation. He realises that even though “highly priced”, marine fuel is priced way below the crude oil from which it is derived.

Marine fuels are in the main produced to company specifications, which are normally stricter than or at least equal to ISO specifications.

The purpose of fuel specification is to stipulate a product quality which, when meeting the requirements of the specification, should perform satisfactorily in the application for which it is intended, provided that application (the diesel engine/boiler) is in normal good condition. However, fuel specification can not safeguard every aspect of satisfactory fuel quality, otherwise it would be far too detailed to be of practical use. And remember, we live in a competitive world. It is naturally in the supplier’s interest to deliver a product which just meets the requirements of the specification at the highest possible price. Independent, third party testing is therefore very important, a must for safe and effective ship operation on today’s fuels.

Know the limitations of your fuel treatment plant

The only way to effectively treat marine fuels on board is to use centrifuges. But even centrifuges can not remove 100 per cent of all the sludge and particles detrimental to engine components. Centrifuge manufacturers may claim that some 70 to 80 per cent of catalytic particles will be removed when their machines are operated optimally. Documented reports, however, show that during manufacturer-controlled tests at their factory, the removal of catfines was just over the 50 per cent mark. But even if one accepts a figure of 70 per cent removal of particles and sludge, it still leaves 30 per cent of the particles and sludge in the treated fuel entering the vessel’s daily service tanks.

Is it customary to re-centrifuge the fuel in the service tank? Some vessels have a fuel piping arrangement to enable this to be done. Still, not all carry out this very important operation regularly.

Are bunker fuel tanks cleaned from time to time? The answer is only very occasionally. Tank cleaning may be on the list of items to be carried out during docking, but it is frequently the item that is dropped either due to cost or time, or both. Settling and daily service tanks (or at least the daily service tank) should be cleaned annually. Just imagine what happens to the sludge and particles accumulated in the tank bottom when the ship runs into stormy weather? This is almost certainly the time when excessive engine components wear occurs.

How effective is the fuel treatment plant on your ships? Most operators probably have no idea. The centrifuges are spinning, the fuel is separated at the throughput matching the engine consumption, the fuel temperature and flow are kept as constant as the fuel treatment plant auxiliary components will allow. The fuel quality is known through testing, and hopefully the
correct gravity disc has been installed in the purifier. The chief engineer, having done his best to optimise the fuel treatment, will have little or no idea as to the quality of the fuel entering the ship's engines. He can not see what is going on in the treatment plant and is not supposed to taste, smell or even touch the product. In fact, he has to cross his fingers and hope that satisfactory quality fuel is entering his power units.

In practice it is very simple and easy to ascertain the effectiveness of the treatment plant through sampling and testing. Some sophisticated operators do this in a planned way, and they have an experience factor at hand as to which quality product they can treat satisfactorily. The day such operators receive an off-specification fuel, they will know whether or not their vessel can handle the product in question and whether to arrange an off-lift operation. This does not mean that the buyer must accept off-specification products without having compensation from the supplier. However, in many cases it will be able to avoid a costly deviation and off-lift operation. At least one of the fuel testing services recommends a “Fuel System Check” programme to their customers. They are well advised to make use of it.
Introduction

Taking onboard off-spec bunkers can cause significant disruption to a vessel’s ability to trade. In addition, it creates problems in recovering from the insurers costs incurred due to a lack of and/or limitation in cover. This circular is intended to provide an example of the problem as experienced by shipowners. The case described below relates to a passenger ship, but applies equally to all types of vessels. Loss Prevention Circular No. 08-01 is the next instalment in a series of circulars produced by Gard dealing with damages associated with bunkers and bunkering and outlines problems which may arise when passenger ships have to deal with off-spec bunkers.

Passenger ship operations are very sensitive to operational disruptions. Costs of disruption can occur in the form of hull and machinery damages, damages and compensation to passengers and crew as well as damage to reputation that may influence future bookings and earnings. Compensation to customers beyond the initial costs due to commercial considerations can easily fall outside the scope of cover of hull and machinery, loss of hire and P&I cover.

Course of events

Upon arrival in Singapore, the vessel was firmly secured to the pier at 0550 hrs. At 0800 hrs, a bunker barge came alongside to deliver bunkers to the vessel. The barge commenced bunkering at 0810 hrs and completed the operation at 1255 hrs. The bunker delivery statement noted that 90 metric tonnes of supposedly IFO 180 cst was supplied. Fuel samples were taken for testing by a credible bunker quality testing company. However, the results from this bunker test would not be available for another 2 – 3 days.

The vessel departed Singapore for Thailand at approximately 1745 hrs on that same day. At 2215 hrs that evening, the vessel experienced a total blackout, including the loss of all navigational equipment. Power was temporarily restored at 2217 hrs. A second blackout occurred at 2218 hrs resulting in the vessel not being under control. Although power was finally restored at 2220 hrs, the vessel was only able to continue at half speed.

The Chief Engineer observed that the bunker which had been supplied in Singapore that day, had a high degree of carbon residue, clogging the complete fuel system in the main and auxiliary engines. The Master informed the owners of the problem and the decision was made to return to Singapore due to safety considerations.

At 1100 hrs the following day, fuel samples were taken in the settling and service tanks where the bunkers had been loaded and the vessel began discharging the off-spec bunkers at 1200 hrs. A representative from the Singapore Maritime Port Authority informed the vessel at 1230 hours that they were being cautioned due to the emission of black smoke – apparently the result of the burning of the off-spec bunkers. An engine repair contractor boarded the vessel at 1600 hrs and upon surveying the situation, indicated that repairs would take at least two days provided no extensive damage was found. After consultations with the owners, the Master decided to abort the cruise.

At 0630 hrs the following day, the debunkering operation was completed. Another bunker barge began loading a fresh supply of IFO 180 cst at 0810 hrs and the operation was concluded at 0945 hrs. All passengers were discharged from the vessel at 0945 hrs. A second agency was used for the sampling of the second bunkers taken and a different bunker testing company was used to analyse the second bunkers. The results of the tests of the first and second bunkers indicated high ash, water and total sediment potential (TSP) content. In addition, high sodium to water content was also reported, indicating the presence of seawater in the bunkers.

Damage to machinery

The damage to the main engine as a result of using the off-spec bunker was abrasive wear marks on all fuel nozzle, abrasive wear on all fuel pump barrel/plunger assemblies as well as heavy fouling of all turbochargers. The turbocharger impellers were noted to be heavily fouled, the labyrinth seals on the gas sides were choked with carbon deposits, and the bearing bushes were worn. In addition, the boiler burner unit was also heavily fouled. Upon review of the engine logbooks, there was no evidence of any problems with the engines prior to taking on the off-spec bunker. The running hours of the main and auxiliary engines were noted to be well within acceptable limits for overhauls.

In this case, there was no indication that the vessel had received the results from the first fuel test prior to sailing. In addition, the vessel had apparently a very limited amount of bunkers onboard prior to loading the first off-spec bunkers. Therefore, the vessel had to commence using the new bunkers prior to receiving the test results. In this circumstance, the vessel was not able to create a ‘buffer’ by using the existing bunkers while awaiting the test results. Had this been the case, the company may have been able to discharge the off-spec bunkers and taken on replacement bunkers.

What types of damages are actually covered? In this type of case, shipowners can find themselves in a situation where insurance cover can only pay a portion of the costs incurred. For example, in this instance the cost of repairs to the damage to the machinery was below the deductible. For loss of hire, the vessel was off hire but within the off hire deductible. The P&I

1. Gard Loss Prevention circulars related to bunkers are: Loss Prevention circular 01-00 (Main Engine Damage Due to Ignition Delay), Loss Prevention circular 03-01 (Bunker Quality), and Loss Prevention circular 04-01 (Charterer’s Liabilities and Bunkers). These circulars can be found on the Gard website at www.gard.no.

© Gard AS, January 2014
entry covered the Member’s “liability to pay damages or compensation to passengers onboard the Ship in consequence of a casualty” as per Rule 28(b) of Gard P&I Club’s Statutes and Rules. As stated in the Gard Handbook on P&I Insurance: “compensation relates only to the Member’s legal liability to the passengers and cannot include any claim by the Member in respect of payments made to passengers to protect the Member’s commercial reputation.” P&I cover thus, does not include additional compensation to passengers above the Member’s legal liability made to foster customer goodwill.

The shipowners is therefore left to bear a significant cost for business disruption in these types of instances, where only limited insurance cover would be available under hull and machinery, loss of hire and P&I. Dependent upon the circumstances, demurrage may also need to be charged and thus creating problem for the shipowner.

Lessons learned

The lessons learned from this case apply to all types of ships. However, the passenger ship industry can be more sensitive than most industries.

Fuel testing

1. Bunkering procedures, including fuel-testing procedures, should be reviewed to ensure correct procedures when dealing with off-spec bunkers. The crew involved should also be properly briefed on these procedures to avoid costly and time-consuming interruptions. In the Det Norske Veritas Annual Report 2000, it is stated that only 40 per cent of the world fleet performs fuel testing. This lack of testing can lead to extensive damage to the vessel’s machinery which is costly both to the owner and insurer alike.

On the other hand, there are cases where there is a company fuel testing procedure but due to commercial or other reasons the results of the tests are neither received in time nor actions taken to adjust the fuel equipment and engines accordingly. The improper use of off-spec fuel can cause significant damage to the vessel and its ability to trade. In the case outlined above, the costs were considerable and were only partially recoverable from insurers.

Taking on bunkers

2. Every precaution should be taken to ensure that adequate bunker supplies are available to allow for the proper testing before use of any new bunkers taken on. It is imperative that passenger ships, as well as other vessels on tight charter schedules, are able to deal with situations where it is necessary to use bunkers without the test results being available. This may involve complex contingency planning in order to properly evaluate and ensure that a ‘buffer’ exists. For example, some shipowners maintain a quantity of marine diesel oil (MDO) onboard for situations where off-spec bunkers need to be discharged and only limited IFO is available.

Main Engine Damage Due to Ignition Delay

Ship Type: Panamax bulk carrier (built 1980)

Course of Events
In a Gulf of Mexico port, the vessel received heavy fuel oil IFO 180 according to ISO category RME 25 with a density of 989.6 kg/m³ and a viscosity of 172 Cst. The bunker receipt information and the following DNVPS analysis coincide with respect to these parameters.

Based on the density and viscosity information, the ignition qualities of this fuel (CCAI) were calculated to 860 which is acceptable for slow speed engines. The vessel is equipped with a 16-cylinder medium speed main engine of European design, and this fuel is on the limit of where operational problems could be expected for medium speed engines. As a result, the chief engineer on board and the ship management office were informed by DNVPS that precautions should be taken to ensure satisfactory combustion.

The chief engineer on board and the ship manager ashore did not pay any attention to the fuel analysis. They did not consider the specific recommendations issued by the engine maker or DNVPS's precautions for operating the main engine with fuel of inferior combustion characteristics.

To compound the problem, the vessel was sent to areas for trading including days with river passage with variable loads on the main engine. This made it difficult to maintain maximum combustion temperature and thus made it virtually impossible to follow the operational recommendations.

The delayed combustion resulted in increased combustion pressure, combustion close to the cylinder walls and the consequential failure of the lubrication of the pistons and liners.

Extent of the Damage
The result was a complete breakdown of all pistons, cylinder liners and cylinder heads with related parts. Due to lack of availability of spare parts onboard ship, only preliminary repairs were made. Thus, the voyage to the discharge port was made at reduced speed. Meanwhile, the company had to make arrangements at the discharge port to acquire spare parts and make preparation for final repairs. The vessel was taken off-hire upon arrival at the discharge port.

As a result the total cost to repair is approximately $530,000 USD and the total time off-hire is approximately 45 days.

Probable Cause
The ship manager and/or commercial operator of the vessel made the error in believing that a lower viscosity fuel (180 Cst) was of better quality than a high viscosity fuel (380 Cst). This is commonly seen when a fuel supplier lowers the viscosity by adding lighter components that may seriously alter the ignition characteristics.

The ship manager had arranged for sampling and analysis of fuel. However, the ship manager had not ensured that their chief engineers were provided with proper procedures and instructions to take the necessary precautions against damages that could be incurred by inferior quality fuel.

The result was that the vessel left the bunkering port with no preventive actions and precautions on how to deal with a situation with a fuel on board with inferior combustion characteristics.

Lessons to be Learned
The importance of fuel sampling and analysis is essential for verification of the quality of the fuel received on board. There is however little value in companies spending money on sampling and testing if shipboard engineers are not properly trained to understand the fuel quality analysis and provided with procedures and instructions on how to adjust the fuel equipment and engines accordingly.

Procedures and instructions should be established in the technical or operational departments on how to:
- establish requirements for fuel quality depending on the fuel treatment equipment and engines on board;
- follow-up the vessels’ bunkering schedules, ensure correct sampling and where to send samples for analysis;
- ensure the engineers on board and technical staff ashore will understand the analysis and the limitations for their equipment, and
- in the event of having taken on fuel of inadequate quality, establish communication with the engine makers and fuel analysing company in order to provide proper instructions to the vessel.

Loss Prevention Circular No. 01-00, July 2000
The interplay of fuel and lubricating oil quality on the reliability of diesel engines

There is a basic relationship between engine reliability and quality of fuel oil and lubricating oil.

Introduction
Hand in hand with new secondary refinery processes, which have developed during the last decades, new engine problems have emerged. It is, unfortunately, a proven fact of life that the end users often have to “pay” for technological advances, until all the links in the chain have adapted to the new parameters.

The significance of fuel oil quality in relation to the condition of an engine is obvious. But this will always have to be considered taking into account the complex system of the main parameters, such as engine/turbocharger specifications, load parameters (high/low), environment, filters, purifying systems, quality of the lubricating oil and the qualifications of the operating engineer. It is not the intention to expand on all the aforementioned aspects in this article, but mainly to highlight the basic relation between engine reliability and quality of fuel oil/lubricating oil.

Statistics
Gard Marine’s statistics show that machinery-related claims constitute 42 per cent of all claims under hull and machinery policies, of which 73 per cent are main and auxiliary engine-related claims. This means that main and auxiliary engine-related claims constitute approximately 31 per cent of Gard Marine’s total hull and machinery claims.

The above figures should be compared with indications from the industry that 80 per cent of all engine breakdowns are related to problems with either the fuel or the lubricating oil.

Trilateral interplay
In any particular engine installation the choice of lubricating oil must not only satisfy the requirements of the engine design, condition and load, but also requirements put forward by the quality of the fuel oil. This may be described by a trilateral interplay involving the lubricating oil, the fuel oil and the engine.

Trouble-free engine management requires each of these three elements to have both design and quality within certain limits. Exceeding these limits may lead to reduced service intervals or, in the worst case, serious engine damage.

Lubricating oils can vary both in quality and characteristics, but most engine manufacturers attempt to avoid these problems by extensively testing different types of lubricating oils during shop trials.

It is generally agreed that the fuel oil, which is the third element in this interplay, has the most influence and the biggest variation in terms of quality and properties. The continuous development of refinery processes during the last decade has resulted in changes in the characteristics of both distillates and heavy fuel oils. Increased demands with respect to environmental issues have also resulted in changes, in particular for the lighter distillates. Possibly, a high quality grade of lubricating oil may prevent the negative effects of unwanted fuel oil properties and secure satisfactory engine performance. Even with a high quality grade lubricating oil, the risk of experiencing problems with low-quality fuel oils is high, particularly in combination with certain load conditions.

The interplay involving fuel oil, lubricating oil and the engine can be illustrated as in the below table.

The areas of concern mentioned in the illustration above may (hopefully) not materialise very often, but, if they do, they will cause serious problems. Very often these problems may be traced...
directly back to unwanted fuel oil characteristics, but in some cases they are due to inappropriate adjustment of the properties of the lubricating oil to the characteristics of the fuel oil.

Off-spec bunkers
A major concern related to marine fuel oil is the receipt of off-spec bunkers. Although this article does not deal specifically with this issue, the areas of concern mentioned above are also applicable to off-spec bunkers problems. The importance of proper fuel oil sampling and analysis procedures can not be over-emphasised. The incidents described in the following article in this issue of Gard News highlight the benefits of good sampling and analysis routines.

Fuel Oil – Engine – Lubricating Oil

Areas of concern

Fuel oil:
Stability
Sulphur
Particles/Cat. fines
Fouling
Ignition
Combustion

Lubricating oil:
Sludge
Separation
Oxidation
Additive
Concentration
Thermal degrading
Concentration

Engine – Problems:
Cylinder wear
Piston ring groove deposits
Cylinder liner polishing
Piston crown deposits
Gas leakage
Crankcase deposits
Fuel oil leakage to the crankcase
Bunker spills

Every vessel needs bunkers. Some are run by fuel oil, others by gas oil, and some need both for their machinery. In addition, vessels need lubricating oils and hydraulic oils. The oils are normally taken on from barges or shore connections through hoses. Hydraulic oils or lubricating oils may be taken on in drums.

Seamen know these things. They know how to plan the bunkering operation, how to follow the routines set out in the vessel’s safety programme. They know how to calculate their need for bunkers and how to order. They know how to hook up the bunker barge and how to connect the hoses to their manifolds. And they know how to monitor the bunkering operations.

And yet, bunkering spills do happen. Over the last 20 months, 350 pollution incidents have been registered in the Gard system. Many of these cases (165) have been reported merely for precautionary reasons and are not expected to cost anything. Of the remaining cases, the majority is expected to cost Gard between USD 100 and USD 100,000 each. There are also a few cases expected to cost more than USD 100,000 each, of which three are expected to cost more than USD 1 million. The most expensive will cost somewhere around USD 25 million.

It is true that not all of these incidents involve bunker spills. However, the majority of the 165 no-cost cases involve minor spills during bunkering operations – spills so miniscule that they would not, some years ago, have been reported to Gard at all. It is also true that the majority of the remaining cases relates to bunker spills one way or the other and this article will analyse some of these events to provide a picture of what happens, and how a mishap is treated in different countries around the globe.

United States

The vessel was bunkering in Oregon. It appeared that the engineer in charge of the operation had unscrewed an ullage pipe cover to be able to check the quantity in the particular tank. Unfortunately, as often happens, a “blurt” forced a small quantity of oil to come out of the hole, and five litres reached the sea. The costs paid by Gard reached USD 3,000, in addition to what the member had to pay under the agreed deductible. How could this have been avoided? First of all, were the scuppers plugged? No. So, whose fault is this? Is there a routine on the vessel for plugging the scuppers when bunkering? Somebody must be responsible for that job and it should be set out in the safety programme. It is essential that the responsibility for doing a job be allocated to a specific individual – not in order to be able to blame somebody when something goes wrong, but in order to make sure that the job gets done. Could the “blurt” have been avoided? A “blurt” is most often caused by an air pocket being trapped between the beams underneath the tanktop depending on the trim of the vessel. It is essential that the person in charge is aware of what trim the vessel has, and what can happen in certain circumstances. Hence, it is better to stop the operation one or two centimetres short and avoid the very expensive oil being lost overboard. [1 litre = about USD 3,000; i.e., 1 ton = about USD 750,000]

Another vessel was bunkering in Texas. In order to be able to follow the operation a manhole had been taken off. Despite such a precaution, the tank was filled faster than expected and 1,000 litres were reported to have reached the surrounding waters. The product was heavy fuel oil, and the vessel’s response plan under OPA 90 was activated. Everything went well in the end, but the operation, including QI (Qualified Individual), OSM (Oil Spill Manager), oil spill response company, US Coast Guard, etc., cost USD 180,000. How could this have been avoided? Obviously, by closer monitoring of the operation. The person responsible for the operation should not be distracted by having to do other things simultaneously.

What about the bunkering speed? Quite often it is said that nobody monitored an operation from the shoreside, or that shoreside monitoring was sloppy, and that the speed was excessive compared to what had been agreed. How can that be proved afterwards? Is there evidence that the vessel had told shore personnel to slow down? It has to be remembered that it is the spiller who is the responsible person and who shall have to pay in the first place. Under OPA 90 the spiller can only avoid responsibility if he can show, by a preponderance of evidence, that somebody else, not being at all related to him, was the sole cause of the oil discharge.

None of the cases mentioned above involved criminal investigation of the responsible crewmember or company. However, nowadays it is quite likely that the Coast Guard will look closely into the vessel’s routines and safety programmes whenever a spill occurs. If they find that something is not in accordance with rules and regulations, e.g., MARPOL 73/78, the FBI may be informed about the case and start a criminal investigation. This means that criminal lawyers may have to be appointed to defend the master, chief engineer and others, and, if non-compliance is grave enough, the shipping or operating company. At this stage Gard and its local correspondents have to step aside because of the attorney/client privilege aspect.

Japan

A vessel was transferring oil internally into the settling tank. Unfortunately the tank overflowed and some oil found its way into the sea through the airpipe. Whenever there is a pollution incident in Japan the Maritime Police will start investigating to find the culprit of the mishap. Such investigation may take some hours, but it may also take days, and in the meantime the vessel is not allowed to leave the port. After having interrogated the chief engineer and other engineers it was found that the second engineer was the wrongdoer. The investigation took two days, which meant that the operators of the liner vessel involved, being on a tight schedule, had all sorts of problems with their customers. Criminal proceedings started and bail of USD 10,000 had to
be put up for the second engineer, with a promise that he should come back to Japan for trial at a later date. If he does not show up when called upon to do so, the bail will be cashed in favour of the Japanese authorities.

The spill in this case was miniscule. In other cases clean-up costs will be added to the bail costs.

Ukraine

Heavy fuel oil had leaked into the tunnel of a vessel, and the tunnel was emptied overboard in Ukrainian waters. An unspecified quantity of oil escaped. The system in Ukraine is to impose a fine and any clean-up costs on the vessel. A table is used to assess the amount of the fine. In this case, since the quantity discharged was unknown, USD 3.1 million had to be paid.

Of course, the original reason for this mishap was a structural fault allowing the oil to enter the tunnel. But who decided to empty the tunnel overboard? Could that have been done otherwise?

Singapore

After having touched the dock, a hole appeared in a bunker tank. Approximately 27 MT escaped into the sea. The cost of clean-up reached USD 465,000.

Another case involved a fractured ballast line passing through a bunker tank. In this case the quantity of oil was unspecified but the mishap was detected and stopped quite rapidly. The cost of clean-up reached USD 33,000.

Singapore is quite effective when it comes to combating spills. A lot of money has been put into their contingency plans and there is plenty of equipment which can be used in the area. Still, with all the islands and the sea currents in the Straits, clean-up operations of some magnitude do not come cheap. In addition, the Prevention of Pollution of the Sea Act (PPSA) imposes criminal liability for, amongst other things, the following:

- discharge of any oil or oil mixture from a ship, a fine of between SGD 1,000 and SGD 1 million, or imprisonment not exceeding two years, or both;
- for failure to report any actual or probable discharge of any oil or oily mixture, a fine not exceeding SGD 5,000;
- for failure to properly maintain oil record books, fines ranging between SGD 5,000 and SGD 10,000, or imprisonment not exceeding 12 months, or both.

While imprisonment for an offence under the PPSA is rare, in a recent case involving a VLCC, the master was sentenced to three months imprisonment and fined SGD 400,000 for the discharge of oil and oily mixtures from the ship. On another charge of failing to properly maintain the oil record book, the master was imprisoned for 10 months.

Imprisonment is not covered by the P&I Club. Neither is a fine for having contravened Marpol or other regulations or for having committed a criminal act.

Turkey

During bunkering, an unspecified quantity of heavy fuel oil escaped through a manifold valve which had not been checked. A fine for USD 45,000, based on the size of the vessel, was imposed.

One wonders how it is possible to forget to check that other manifold valves are closed. However, this case is one of many involving just such a cause of pollution. Are routines and safety programmes unsatisfactory, or are the individuals in charge reckless?

The human element

The reader will have noted that in the cases mentioned above the human element has been of relevance. It is a fact that very often the human element is the cause of mishaps. So what is this “human element”? It usually seems to consist of the individual who does not do what he should under certain circumstances. Rather than checking the ullage of the tank he goes aft to have a cigarette. Rather than checking the safety programme he feels he is so experienced he knows how to handle this operation. Rather than making sure that the scuppers are plugged or the manifold valve on the other side of the vessel is closed, he feels that somebody else should be responsible for those things so he does not bother. Rather than showing interest in doing a good job, he feels that the master or the chief engineer does not appreciate what he does anyway, so why bother?

There are so many excuses for behaving carelessly. Not all of them can be mentioned here. But what can be done to try and avoid mishaps caused by sloppy behaviour? Should one have the careless individual replaced? Is there any guarantee that the replacement will not behave in the same way after a while? There appears to be no easy answer to these questions. But it seems that companies that have closer ties to their crew members, that offer them the option to come back to the same vessel or other company vessels after a vacation period, have less mishaps than companies that do not. But people are different and what is good for one may not be good for another. Still, making the crew member feel he is part of the company in which he serves can only have a positive effect.

The cover

The cover provided is set out in Rule 38.1 of Assurancesforeningen Gard’s 2001 Statutes and Rules:

“Rule 38 Pollution
1. The Association shall cover: a. liabilities, costs and expenses (excluding fines) arising in consequence of the discharge or escape from the ship of oil or any other substance or the threat of such discharge or escape.”

It should be noted that the rule covers pollution caused both by oil and other substances. Hence, it is a very wide cover. The cover responds equally where oil is spilled during bunkering or a chemical cargo overflows from the tank during loading. It should also be noted that the substance must have been discharged or have escaped from the ship. This means that the cost of cleaning up the vessel’s deck after an overflow is not recoverable.

The rule says that “liabilities, costs and expenses” are covered. Liabilities in this context mean legal liabilities.

Fines are not covered under Rule 38.1, but under Rule 47, which will be considered later.

To give a picture of actual liabilities which are covered under Rule 38.1, let us examine a specific section of OPA 90:

“Sec 1002. Elements of Liability
(a) In General: (…) each responsible
party for a vessel (…) from which oil is discharged, (…) is liable for the removal costs and damages specified in subsection (b) that result from such incident.

(b) Covered Removal Costs and Damages

(1) Removal Costs – The removal costs referred to in subsection (a) are (A) all removal costs incurred by the United States, a State, or an Indian Tribe (…), and (B) any removal costs incurred by any person for acts taken by the person which are consistent with the National Contingency Plan. (…)"

Removal costs are costs incurred in removing the oil from the sea or land, marsh areas, soiled boats, beaches, docks, and so on. They include the cost of boats and people, safety equipment for people and other equipment, storage and hauling of waste to a dump yard or place for incineration, including the cost of getting a permit as a waste generator to haul the waste to the site of destruction or storage.

“(…) (2) Damages – The damages referred to in subsection (a) are the following:

(A) Natural Resources – Damages for injury to, destruction of, loss of, or loss of use of, natural resources, including the reasonable costs of assessing the damage, which shall be recoverable by a United States trustee, a State trustee, an Indian tribe trustee, or a foreign trustee.”

This paragraph is of vital importance whenever there is a spill of some significance in the US. It should be noted that those who can formulate a claim under this paragraph are the federal or state authorities, or Indian tribes. It should also be noted that “reasonable” costs of assessing the damage are recoverable. Unfortunately, it does not say who should decide on what are “reasonable” costs.

Natural resources in this context are for instance birds, sea otters and fish. One of the intricate points from the Club’s perspective is the “loss of use of” aspect. In one case some years ago the shipowner was found liable to the trustees for approximately USD 12million because people were not allowed to visit a beach for about 2 weeks while clean-up was being undertaken there.

There are further elements of liability described in the OPA 90, but these are beyond the scope of this article. However, the US is not the only country imposing strict liability on an offender. Singapore is mentioned above, but most countries with interest in shipping have the same attitude, although not, perhaps, to the same extent as the US.

The second Rule of particular interest in respect of pollution is Rule 47.1.c: “Rule 47 Fines

1. The Association shall cover fines or other penalties imposed upon a Member (or imposed upon a third party whom the Member is legally obliged to reimburse or whom the Member reimburses with the agreement of the Association) by any court, tribunal or other authority of competent jurisdiction for or in respect of any of the following: (…) c. the accidental escape or discharge of oil or any other substance or threat thereof, provided that the Member is insured for pollution liability under the P&I entry in respect of oil pollution risk.”

It should be noted that not only fines imposed upon the member as shipowner are covered under this rule. If the member is legally obliged to reimburse a crewmember, for instance, for a fine imposed on that person, it may also be covered. Where the member is not legally liable to reimburse the fine, but wishes to do so for other reasons, he could still apply for cover. It is then up to the discretion of the Club whether to provide cover or not.

It should also be noted that for a fine to be covered under Rule 47 there must have been an accidental escape. Rule 38 mentions nothing about the escape having to be accidental. So it could happen that even though the Club would cover clean-up and other costs related to a spill, cover would not be provided for a fine if the escape had not been accidental. From a practical point of view, the provision in Rule 47 is there in order to exclude fines where a deliberate action from those on board has caused a pollution incident. It does not matter whether the fine is imposed upon the vessel or any of the crew responsible for the deliberate action. This means that a fine imposed because of a deliberate and unauthorised pumping of bunkers or bilge water overboard would not be covered. On the other hand, a fine imposed upon the vessel or a crewmember due to an accidental over-bunkering would be covered.

Civil fines do not create problems for the cover provided the above requirements are fulfilled. Criminal fines, however, do create problems. Although it might seem from a shipowner’s or a seaman’s perspective to be totally insane to be criminally charged because, for instance, some oil gets in the water after an incident, many countries today do have legislation under which the individual will be charged. The US and Singapore are examples mentioned before. Fines (or imprisonment) in such cases are not covered under the Rule set out above.

Conclusions

– Use your brain when you are in charge of or part of a bunkering operation.

– Know what you are doing.

– Check valves once more, even if it is not your responsibility.

– Check that scuppers and absorbent material are in place.

– Make sure that there is good communication with the bunker supplier.

– Make sure the bunker supplier is going to deliver the quantity you ordered.

– Remember that a fine may cost you dearly.

– Remember that your family may not be able to visit you in prison.
Charterer’s Liabilities and Bunkers

Introduction
Neither shipowner nor charterer likes receiving poor quality bunkers. This can lead to a number of problems for shipowners and charterers. These problems include:
- damages to main or auxiliary engines;
- finding terminals willing to receive de-bunkered fuel;
- co-ordinating and bearing the costs associated with diverting the vessel for off spec bunker discharge;
- coordinating and bearing the costs of providing new bunkers to the vessel;
- reducing speed to accommodate the use of off spec bunkers; and/or
- Co-ordinating and bearing the cost of lost time, i.e. off-hire.

These problems can lead to disputes between ship owners and charterers. Therefore, it is important for both shipowners and charterers to protect themselves in the event of disputes. The objective of this circular to present case study examples of these types of incidents, how disputes can arise, and provide some guidance as to how shipowners and charterers can protect their interests.

Case 1: Fresh water contamination
Upon arrival in port, ship A had a remaining 24.8 MTs of intermediate fuel oil (IFO) be stemmed. The bunkers were loaded into an empty bunker tank. Since there were little remaining bunkers onboard prior to loading the new bunkers, the Master and Chief Engineer agreed that the new bunkers should be used. When the separators were started, it was noticed that large quantities of sludge and water were clogging sludge discharge passage. A separate sludge line was then fitted to collect the sludge in drums so as not to overload the vessels’ sludge tank.

It was determined that approximately 15% of the separators throughput was sludge. It was believed that the IFO did not have the proper time to settle due to the short time period between the stemming and purifying the bunkers. This created the large quantities of emulsified sludge. The bunker-testing agency stated that the amount of water in the IFO was likely to be difficult to remove.

A dispute arose between the owners and the providers of the bunkers. It is common practice that the fuel supplier attends the bunker sampling procedure. In this case, the request to witness the sampling had been signed by the supplier prior to commencement of the bunkering. The validity of the samples drawn by the ship was questioned since neither the fuel supplier nor other unbiased personnel observed the sampling procedure and handling. The supplier contested that the contamination of the bunkers occurred after being loaded onboard the vessel.

The vessel secured a continuous drip sample using the flange sampler fitted at the ships bunker manifold. The bunker supplier took the bunker samples at the point where the bunker hose was connected to the shore bunker installation. The supplier refused to make arrangements to arrange for the discharge of the inferior bunkers contending that it was the vessel’s fault for the contaminated bunker. They contended that other vessels had bunkered soon before and after ship A and had no water contamination problems. The vessel was required to retain and use the bunkers and eventually discharge the remaining unsuitable fuel during a scheduled dry-docking some months later. The off spec bunkers added additional deadfreight to the vessel, thus reducing the amount of cargo that could be carried.

Case 2: Motor lube oil contamination
Ship B took on IFO and marine diesel oil (MDO) bunkers and the bunker-testing agency received the bunker samples 5 days after the operation. The bunkers were placed into 7 different tanks. The sampling procedure was in accordance with the vessel’s bunkering procedure. Two days later the bunker-testing agency informed the vessel of the results of the sample analysis. The specifications stated in the charterparty required that the bunkers be in accordance with ISO 8217.

It was determined that both the IFO and MDO bunkers contained non-hydrocarbon additives typical for motor vehicles lubricants. These additives may negatively influence ship’s machinery (see the Gard Loss Prevention Circular 03-01, Bunker Quality). Their use may lead to increased wear rates of machinery by inhibiting the separators that remove abrasive particles and water from the bunker fuel and contribute to fouling in the exhaust spaces, turbocharger blades and nozzle rings. In addition, it was explicitly stated in the charterparty agreement that no spent lubricants were to be found in bunker fuel used onboard the ship.

The vessel informed the owner and charterer of the results of the analysis. The owner then requested that immediate action be taken to discharge the off spec bunkers. On the same day that the sample evaluation was received, it was arranged for additional samples to be taken by a survey agency appointed by the charterer. The surveyor took various samples of the IFO and MDO. Analyses of the three samples showed that for one sample, blending with another fuel had occurred and hence less spent lubricants in the mixture. The MDO was needed to run the auxiliary engines and the donkey boiler. Results from the other samples showed no drop in the elements that indicated the presence of the automotive lubricants. However, it was the view of the charterer’s surveyor that the bunkers were not as bad as the owner had suggested.

The charterer then arranged that the original shipboard sample be sent to a second bunker-testing agency for analysis. The results of that test showed that the IFO and MDO conformed to the requirements of ISO 8217 as required by the chartering agreement, but contained spent automotive lubricants.

The charterer contended that none of the surveyors or the bunker-testing agency ever requested for the bunker to be removed. In addition, some of the presumed off spec bunkers had already been mixed with other bunkers onboard by that time. However, the
owner the MDO that was used resulted in the black out of the auxiliary engines.

In addition, the filters needed cleaning twice a day whereas this procedure normally done only once a week.

Eventually, it was decided that the ship would use the IFO after ensuring that all procedures were implemented to optimise the fuel treatment onboard. However, the auxiliary machinery was sensitive to traces of catfines (e.g. aluminium and silicon) that were found in the fuel. The charterer made all arrangements to discharge the off spec MDO and replace it with MDO without any traces of spent lubricants and catalytic fines.

Recommendations

Similar cases as those described above are common in our industry, and we suggest that the following recommendations be considered by both the owners and charterers to protect their interests:

1. Both owners and charterers should ensure that standard agreements are in place with regard to ensuring that the quality of bunker fuel meets recognised quality standards. That is, make use of responsible fuel testing services such as DNV Petroleum Services (DNVPS) or Lloyds Register (FOBAS). Ensure that proper wording in the charterparty form is included to ensure that bunkers are ordered against the appropriate fuel specifications.

2. Procedures are in place and implemented onboard the ship to test the bunkers for density, viscosity and water, using a simple test kit. A suitable sampler should be used drawing a continuous drip sample at the vessels fuel manifold during the entire bunkering operation.

3. The Master should ensure that all relevant parties including the fuel supplier's representative witness the sampling procedures. If the supplier refuses to witness the sampling procedure, preparation, signing and sealing, the Master should document their refusal in order to protect the interests of both the owner and the charterer.

4. All efforts should be made by the ship’s crew to segregate new and old bunkers. If for some reason new and previous fuels have to be mixed, avoid equal proportions. This includes ensuring that records of all fuel transfers are properly documented in the vessel’s logbook. If problems are experienced, secure samples from the tanks involved and describe the problems.

5. The vessel should notify the owner immediately if they are experiencing problems with an off spec fuel. This enabling the operator to register a complaint against the supplier. The vessel must also receive clear instructions from the operator as to the handling of the product in question, including that of debunkering.

For further information on bunker quality, testing and other relevant information, you can visit such websites as www.bunkersworld.com, www.dnvps.com, and/or www.lrfobas.com and www.fueltech.no.

Gard would like to thank and acknowledge Mr. Kjell Haugland for is assistance in preparing this circular.

P&I incident – How not to do it – Bunker operations

A Member’s vessel – a bulk carrier – recently had a spill of bunker oil in a dock area and clean up costs alone amounted to around USD 130,000. The vessel was conducting an internal transfer of heavy fuel oil from a deep tank to a settling tank and as a result the bunker line became pressurised. Whilst ordinarily this might not have been a problem, the deck manifold for the bunker line had not been closed. Consequently fuel escaped onto the starboard side of the deck and via the scuppers into the dock.

It was estimated that a quantity of 5 to 10 MT of oil found its way overboard and the slick spread, contaminating the walls of four berths. A number of barges and other vessels in the vicinity of these berths were also contaminated. The vessel’s discharge operations were temporarily suspended.

Clean up was made difficult and protracted because heavy fuel oil is persistent in nature, meaning that it naturally dissipates slowly.

Claims from stevedores and barge owners for idle time, as a result of the spill and clean up, are currently being reviewed. The Master is also to be fined.

The above incident demonstrates how simple deficiencies and a small amount of oil spilled can have significant consequences. Before any bunkering operation, including the internal transfer of oil, procedures must be followed to ensure that any potential deficiencies are rectified before it is too late. On this occasion the importance of blanking off manifold connections not in use and plugging the scuppers became regrettably obvious.
The phrase “stone cold bonkers” (stone in coal bunkers), which was used to describe a chief engineer’s demeanour on discovering large lumps of flint amongst what was supposed to be best Welsh anthracite, suggests that the problems concerning bunkers, if not just fuel oil, coincide with the introduction of mechanical propulsion on vessels.

Whilst the problems associated with poor quality bunkers have given rise to a number of serious disputes between the respective parties involved in bunker operations (owners, charterers, physical suppliers and brokers), it has been noted by a London solicitor that the potential for a major casualty is enormous where such casualty arises out of the provision of substandard bunker fuel.

The question of bunkers has provided a considerable number of disputes for members and clients over the years. The following disputes appear most frequently:
- Disputes in respect of bunker quality.
- Disputes in respect of bunker quantity (quantity actually stemmed and quantities upon re-delivery).
- Disputes in respect of damage done to bunkers whilst aboard the vessel.

Bunker Quality

The solicitor referred to above also asserted that he could not recall the last time he had seen a decent bunker clause in a charterparty, and, by and large, that comment holds true. In Nippon Yusen Kaisha v. Alltrans Group of Canada Limited, the court was asked to consider whether Clause 2 of the NYPE form (1946 edition) imposed a strict liability on the charterers with respect to the quality and fitness of the fuel supplied to the vessel, or, in the alternative, the charterers were merely under a duty to use due diligence in ensuring that there were proper bunkers. The court held that the duty on the charterers was an absolute one.

In a subsequent London arbitration a tribunal was asked, again, to deal with this issue (namely Clause 2 of the NYPE form), albeit that the charterers also referred to a clause dealing with a vessel’s description where the fuel was described as “IF 180 CST”. The vessel, after taking fuel on board, sustained problems with the fuel injection equipment, which led to damage to both cylinder liners and piston crowns, which necessitated a deviation for repairs. The charterers argued that their obligation was confined to supplying fuel with a designation “IF 180 CST”, given that that was the sole criteria contained within the charterparty. The owners, on the other hand, referred to the passage in Wilford on Time Charters at page 138, namely: “The bunkers supplied by the charterers must be of reasonable general quality, suitable for the type of engines fitted to the particular ship.”

The tribunal found in favour of the owners. It is perhaps of note that the tribunal seemed to have placed considerable reliance upon the fact that it was the charterers who had control of the bunker supply operation, in that they contracted with the supplier, controlled where the vessels bunkered, at what price were the bunkers and how much was to be bunkered.

Finally, the authors of Bunkers opine as follows on page 109: “(…) there appears to be a growing consensus that, even without a bunker quality clause/fuel specification in the charterparty, charterers are under an absolute obligation to provide bunkers which are reasonably fit for the vessel’s engines. If the engines are non-standard in any respect, thereby requiring non-standard bunkers, then it is of course for the owners to so advise charterers whose obligation, otherwise, is simply to provide bunkers which would be reasonably fit for the standard engine of the type in question.”

The point being made reinforces the comment referred to at the beginning of this section: a properly drafted clause, applicable to the vessel in question, may assist in avoiding problems or, at least, if problems do occur, in identifying which party bears the risk involved. Of course, if there is an express stipulation with regard to the bunkers then that must be complied with.

Quantity of bunkers

Disputes in respect of the quantity of bunkers delivered

It will come as no surprise to anyone to hear the complaint from a vessel owner alleging that he has been charged for bunkers in excess of what he, purportedly, received. Whilst tanks that are large and of a regular shape pose few difficulties in ascertaining quantities, tanks which are of an irregular shape pose much greater problems. Any dispute will largely depend upon the evidence available (this comment applies equally for disputes in respect of quality). If operational circumstances permit, the bunkers can be loaded into previously empty tanks, then it will be easier, from an evidential standpoint, to convince a judge/tribunal that the position is correct. Further, well kept records and contemporary documents are of paramount importance. Lastly, as disputes of this nature arise between the owner/charterer and the bunker supplier, it should be noted that the contracting party with the bunker supplier may have to act with considerable speed, as it is a feature of many bunker supply contracts that should claims not be presented, or proceedings commenced, within a reasonably short period of time, then the purchaser waives all its rights against the bunker supplier; this is, by and large, to be contrasted with the position between owner and charterer.

Disputes in respect of bunkers upon re-delivery

There are usually two types of dispute in respect of bunkers upon re-delivery, but there is one common denominator: the volatility of bunker prices. The
become the owners of the fuel on board the vessel at the time of delivery, with the owners taking over the property in the bunkers upon re-delivery. Accordingly, whilst the vessel is on charter the owners are bailees of the bunkers on board and they are, accordingly, under an obligation to care for the bunkers. In one incident cargo gained access to the bunker tanks due to a failure of a sounding pipe that ran through the cargo hold. The ensuing contamination of the bunkers in the adjacent double bottom tank caused considerable damage to the vessel’s main engines and, further, the owners were obliged to compensate the charterers for the bunkers on board which had become unusable by reason of the contamination.6

Evidence
With the exception of some disputes in respect of quality, where considerable technical expertise may be required, the majority of these disputes do not involve “rocket science”, the disputes are, however, to quote our London solicitor, “very expensive claims to run”. From a legal standpoint, a good case without good evidence simply becomes a bad case. Good on board practice is only good on board practice if there are records to place before the appropriate tribunal. The provenance of the samples of the fuel alleged to have caused the problems must be clear. Further, of course, the link between the fuel in question and the damage has also to be proven. Usually the latter is easier to establish than the former.

A good example on the question of evidence can be gleaned from the following arbitration.7 There was an allegation that the bunkers supplied to the vessel were contaminated. The owners relied upon analysis of samples they had taken from the ship’s manifold. The arbitrators held that the vessel’s samples had been taken in the normal and correct manner by means of continuous drip mechanism. Conversely, no samples had been taken on the barge itself. The award then goes on to state as follows: “Had they [the samples] been taken, properly witnessed and acknowledged, analysis of them would have been of considerable weight. As it was, some ‘samples’ were handed to the Chief Engineer, who had been persuaded to sign for them but there was no evidence (our emphasis) as to where, how and when those ‘samples’ were taken.”

The tribunal found in the owners’ favour, and whilst it may well be that others will not follow it, that tribunal’s methodology is reasonably clear, in that the absence of evidence placed the charterers at a considerable disadvantage, notwithstanding a significant number of arguments put forward by them.

The first scenario concerns the case where the vessel is to be re-delivered with “about” the same quantities of bunkers as on delivery and, additionally, where the bunker price has been stipulated in the charterparty. Obviously, it is difficult to determine when, precisely, a vessel will be re-delivered and, accordingly, common sense dictates that some allowance must be made. The question is, therefore, how much of an allowance. The answer will be a matter of fact and will depend upon factors such as the daily consumption expected, the quantities stipulated in the charterparty and the characteristics of a particular vessel. An accurate determination of the quantity of fuel used, together with historical records (daily tank soundings, daily flow meter readings, records of bunker receipts and records in respect of sludge and settled water spring to mind), will assist in resolving any dispute that arises.

The second scenario is where the charterparty is silent on the question of re-delivery bunkers but the price of those bunkers is pre-determined. The charterers stem bunkers to take advantage of this contractually agreed price by bunkering the vessel to full capacity just prior to re-delivery. The courts, both at first instance and in the Court of Appeal,1 held that the charterers had no power to order fuel that was “in no way required for charterparty purposes”.

Damage to the bunkers whilst on board the vessel
It is generally accepted that under all time charterparties the charterers become the owners of the fuel on board the vessel at the time of delivery, with the owners taking over the property in the bunkers upon re-delivery. Accordingly, whilst the vessel is on charter the owners are bailees of the bunkers on board and they are, accordingly, under an obligation to care for the bunkers. In one incident cargo gained access to the bunker tanks due to a failure of a sounding pipe that ran through the cargo hold. The ensuing contamination of the bunkers in the adjacent double bottom tank caused considerable damage to the vessel’s main engines and, further, the owners were obliged to compensate the charterers for the bunkers on board which had become unusable by reason of the contamination.6

Evidence
With the exception of some disputes in respect of quality, where considerable technical expertise may be required, the majority of these disputes do not involve “rocket science”, the disputes are, however, to quote our London solicitor, “very expensive claims to run”. From a legal standpoint, a good case without good evidence simply becomes a bad case. Good on board practice is only good on board practice if there are records to place before the appropriate tribunal. The provenance of the samples of the fuel alleged to have caused the problems must be clear. Further, of course, the link between the fuel in question and the damage has also to be proven. Usually the latter is easier to establish than the former.

A good example on the question of evidence can be gleaned from the following arbitration.7 There was an allegation that the bunkers supplied to the vessel were contaminated. The owners relied upon analysis of samples they had taken from the ship’s manifold. The arbitrators held that the vessel’s samples had been taken in the normal and correct manner by means of continuous drip mechanism. Conversely, no samples had been taken on the barge itself. The award then goes on to state as follows: “Had they [the samples] been taken, properly witnessed and acknowledged, analysis of them would have been of considerable weight. As it was, some ‘samples’ were handed to the Chief Engineer, who had been persuaded to sign for them but there was no evidence (our emphasis) as to where, how and when those ‘samples’ were taken.”

The tribunal found in the owners’ favour, and whilst it may well be that others will not follow it, that tribunal’s methodology is reasonably clear, in that the absence of evidence placed the charterers at a considerable disadvantage, notwithstanding a significant number of arguments put forward by them.

The first scenario concerns the case where the vessel is to be re-delivered with “about” the same quantities of bunkers as on delivery and, additionally, where the bunker price has been stipulated in the charterparty. Obviously, it is difficult to determine when, precisely, a vessel will be re-delivered and, accordingly, common sense dictates that some allowance must be made. The question is, therefore, how much of an allowance. The answer will be a matter of fact and will depend upon factors such as the daily consumption expected, the quantities stipulated in the charterparty and the characteristics of a particular vessel. An accurate determination of the quantity of fuel used, together with historical records (daily tank soundings, daily flow meter readings, records of bunker receipts and records in respect of sludge and settled water spring to mind), will assist in resolving any dispute that arises.

The second scenario is where the charterparty is silent on the question of re-delivery bunkers but the price of those bunkers is pre-determined. The charterers stem bunkers to take advantage of this contractually agreed price by bunkering the vessel to full capacity just prior to re-delivery. The courts, both at first instance and in the Court of Appeal,1 held that the charterers had no power to order fuel that was “in no way required for charterparty purposes”.

Evidence
With the exception of some disputes in respect of quality, where considerable technical expertise may be required, the majority of these disputes do not involve “rocket science”, the disputes are, however, to quote our London solicitor, “very expensive claims to run”. From a legal standpoint, a good case without good evidence simply becomes a bad case. Good on board practice is only good on board practice if there are records to place before the appropriate tribunal. The provenance of the samples of the fuel alleged to have caused the problems must be clear. Further, of course, the link between the fuel in question and the damage has also to be proven. Usually the latter is easier to establish than the former.

A good example on the question of evidence can be gleaned from the following arbitration.7 There was an allegation that the bunkers supplied to the vessel were contaminated. The owners relied upon analysis of samples they had taken from the ship’s manifold. The arbitrators held that the vessel’s samples had been taken in the normal and correct manner by means of continuous drip mechanism. Conversely, no samples had been taken on the barge itself. The award then goes on to state as follows: “Had they [the samples] been taken, properly witnessed and acknowledged, analysis of them would have been of considerable weight. As it was, some ‘samples’ were handed to the Chief Engineer, who had been persuaded to sign for them but there was no evidence (our emphasis) as to where, how and when those ‘samples’ were taken.”

The tribunal found in the owners’ favour, and whilst it may well be that others will not follow it, that tribunal’s methodology is reasonably clear, in that the absence of evidence placed the charterers at a considerable disadvantage, notwithstanding a significant number of arguments put forward by them.

6 Liability for said damage falls under the P&I cover – see Rule 39 of Assuranceforeningen Gard’s 2001 Statutes and Rules.
7 London Arbitration 8/98.
CONTACT DETAILS FOR GARD’S GLOBAL NETWORK

Lingard Limited
Trott & Duncan Building
17A Brunswick Street
Hamilton HM 10
Bermuda
Tel +1 441 292 6766
Email companymail@lingard.bm

Gard AS
P.O. Box 789 Stoa
NO-4809 Arendal
Norway
Tel +47 37 01 91 00
Email companymail@gard.no

Gard (Baltic) Ab
Bulevardi 46
FIN-00120 Helsinki
Finland
Tel +358 30 600 3400
Email gardbaltic@gard.no

Gard (France) Ltd
2, A. Papanastasiou Avenue
185 34 Kastella, Piraeus
Greece
Tel + 30 210 413 8752
Email gard.greece@gard.no

Gard (HK) Ltd
Room 3505, 35F
The Centrium, 60 Wyndham Street
Central
Hong Kong
Tel +852 2901 8688
Email gardhk@gard.no

Gard (Japan) K.K.
Kawade Building, 5F
1-5-8 Nishi-Shinbashi
Minato-ku, Tokyo 105-0003
Japan
Tel +81 (0)3 3503 9291
Email gardjapan@gard.no

Gard (Switzerland) AG
P.O. Box 80388
CH-8098 Zurich
Switzerland
Tel +41 58 717 73 00
Email gardswitzerland@gard.no

Gard (UK) Limited
85 Gracechurch Street
London EC3V 0AA
United Kingdom
Tel +44 (0)20 7444 7200
Email garduk@gard.no

Gard AS
Skipsbyggerhallen
Solheims gate 11
NO-5058 Bergen
Norway
Tel +47 37 01 91 00
Email companymail@gard.no

Gard AS
Stepenigt 2, Aker Brygge
NO-0250 Oslo
Norway
Tel +47 37 01 91 00
Email companymail@gard.no

Gard Marine & Energy – Escritório de Representação no Brasil Ltda
Rua Lauro Muller 116 – Suite 2405
Botafogo, 22290-160,
Rio de Janeiro, RJ,
Brazil
Tel +55 (21) 3544-0046
Email gardbrasil@gard.no

Emergency Telephone Number
+47 90 52 41 00
www.gard.no